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ABSTRACT

This paper presents an efficient content-based image 
retrieval system that captures users’ semantic concepts in 
clusters.  These semantically homogeneous clusters aid in 
the retrieval system to accurately measure the semantic 
similarity among images and therefore reduce the semantic 
gap.  They also aid in the retrieval system to find matched 
images in a few candidate clusters and therefore reduce the 
search space.  The extensive experiments demonstrate that 
the proposed retrieval system outperforms the peer systems 
to quickly retrieve the desired images in a few iterations.

Index Terms— Affinity relations, content-based image 
retrieval, semantic clustering, semantic similarity

1. INTRODUCTION 

With the increasing amount of digital storage space and the 
increasing popularity of image hosting websites, content-
based image retrieval (CBIR) has become an increasingly 
important information retrieval technique.  Recent research 
effort mainly aims to address two major challenges: 1) 
reduce the semantic gap between the high-level concepts 
and the low-level features to make retrieval effective; and 2) 
reduce the search space to make retrieval efficient. 

Relevance feedback (RF) techniques are effective in 
reducing the semantic gap and improving the retrieval 
performance.  RF is an interactive process in which the user 
labels correctly retrieved images as relevant to the query.  
This feedback reveals the semantic relations among images 
since relevant images share similar semantics.  It is 
therefore used to refine the query in a retrieval session.  
Recently, RF techniques are further expanded to derive the 
semantic relationships among images by studying the 
accumulated feedback collected from multiple users in 
different retrieval sessions.  Researchers propose to use the 
semantic space [1], knowledge memory model [2], retrieval 
log [3], virtual feature matrix [4], and affinity matrix [5] to 
store the search history.  Correspondingly, they propose to 
employ the dot product correlation [1], memory learning 

[2], statistical correlation [3], cross session learning [4], and 
manifold techniques [5] on the stored historical feedback to 
estimate the semantic relevance between images.  These 
learning techniques reduce the semantic gap and achieve 
impressive retrieval results.  However, they do not reduce 
the search space.  Clustering techniques are therefore 
proposed to estimate the semantic categories of an image 
database.  Researchers apply the semantic grouping [6], 
cluster affinity search [7], and dynamic semantic clustering 
techniques [8] on accumulated RF to extract semantically 
homogeneous clusters of images.  These clustering 
techniques effectively reduce the search space.  However, 
the complexity of constructing semantic clusters is high. 

In this paper, we propose a novel image clustering 
approach that constructs clusters by capturing users’ 
semantic concepts and deriving the semantic relationships 
among images.  We use these semantically homogenous 
clusters to reduce the semantic gap and the search space to 
facilitate the image retrieval task.  Our system offers the 
following advantages: 1) The learning mechanism captures 
users’ query concepts in clusters; 2) The clusters are created 
and updated based on the users’ labeled retrieved images; 3) 
The user’s RF dynamically updates the semantic similarity 
measure; 4) Search space reduction significantly reduces the 
size of the candidate image pool for a query.  The remainder 
of the paper is organized as follows: Section 2 describes the 
general methodology of the proposed system.  Section 3 
presents the experimental results. Section 4 concludes the 
paper with a discussion of future work. 

2. THE PROPOSED SYSTEM 

The proposed system consists of four components: feature 
extraction, semantic concepts capturing, semantic 
clustering, and image retrieval.  We explain each component 
in the following subsections. 

2.1. Feature Extraction 

Each image is represented by 100 low-level features.  
These global features include the 64-bin HSV color 
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histogram, 9 color statistics (e.g., the first three moments for 
each of the HSV color space), 18-bin edge direction 
histogram, and 9 texture statistics  calculated from the 
entropy of each of nine subbands of a 3-level wavelet 
transformed grayscale image.  These global features are 
easy to compute and effective in image retrieval.  However, 
they are limited in describing objects in an image.  As a 
result, we also divide each image into five regions as shown 
in Fig. 1.  This block-based region division scheme has been 
proven to achieve comparable image annotation results as 
the complicated image segmentation scheme.  The same 36 
features used in the global feature extraction are calculated 
for each of the five regions.  We finally normalize the 
regional features so each value indicates the likelihood of a 
feature observed from an 
image and the sum of the 
likelihood of all regional 
features is 1. 

2.2. Semantic Concepts 
Capturing

In our system, the offline training is implemented to record 
the history of user retrieval patterns and retrieval 
frequencies on the image database.  User retrieval patterns 
denote the affinity among images retrieved by user queries, 
while retrieval frequencies denote how often a query was 
submitted by users.  The affinity indicates the co-occurrence 
relationship among images.  That is, the jointly, positively 
labeled images in a search session likely contain similar 
semantic content.  The higher the number of sessions in 
which the affinity exists, the higher the semantic similarity 
among the affinity-related images may be expected. The 
randomly chosen training images are then used to record 
user concepts and construct the semantic clusters offline. 

For each training image, the initial retrieval starts with 
returning the 40 closest images by computing Euclidean 
distance on the normalized low-level features.  The user 
marks the retrieved images that are similar to the query 
image as relevant images.  That is, all positively labeled 
images are believed by the user to be semantically related to 
query.  We then build a matrix (pMatrix) to store these user 
retrieval patterns (semantic concepts).  The width of this 
matrix is the number of database images, and the length is 
the number of unique queries submitted so far.  Initially 
each row is all 0’s.  Based on the user’s RF, all relevant 
(positive) images have their respective slots incremented by 
1 and all irrelevant (negative) images have their respective 
slots decremented by 1.  We also use a vector (fVec) to store 
retrieval frequencies, which keep track of the times each 
image is returned as positive or is submitted as a query.  The 
length of this vector is the number of database images. 

For all future iterations of training on the query, we 
train an RBF-based SVM on the accumulated user 
responses and return the 40 closest images that have not 

been returned.  We then update pMatrix and fVec using the 
same strategy mentioned in the initial retrieval process. 

For a query image submitted multiple times, its current 
retrieval patterns merge with its prior retrieval patterns by 
adding their respective rows.  Therefore, each row in 
pMatrix represents retrieval patterns for a distinct query. 

2.3. Semantic Clustering 

The semantic clustering process starts after capturing users’ 
semantic concepts.  It is different from most clustering 
techniques in the sense that the number of possible semantic 
categories (clusters) in the image database is automatically 
estimated.  It consists of three phases: initial semantic 
clustering, semantic cluster merging, and addition of non-
clustered images.  The first phase directly translates pMatrix
to initial clusters.  The second phase merges the initial 
clusters.  The third phase places all images not yet clustered 
in an already created cluster or in their own new cluster.  In 
the following, we explain these three phases in detail. 

2.3.1. Initial Semantic Clustering 
We create one cluster for each of the rows in pMatrix.  Each 
cluster comprises of all images with a positive value in the 
corresponding row of pMatrix.  That is, all images in a 
cluster are labeled as relevant to the query and are likely to 
contain similar semantics.  It should be noted that the same 
images could be labeled positive in different queries.  That 
is, an image may belong to multiple clusters represented by 
different query images.  This allows the clusters to be 
merged in the next phase. 

2.3.2. Semantic Cluster Merging 
We iteratively merge initial clusters using an adaptive 
threshold.  If the number of images coexisting in clusters A
and B is larger than a quarter of the number of images in the 
smaller cluster of A and B, we will merge these two clusters 
by combining the images in both clusters.  The algorithmic 
view of this merging process is summarized in Fig. 2. 

Fig. 2: Algorithmic view of the cluster merging 
After merging overlapped clusters, we also compress 

pMatrix by merging rows corresponding to the merged 
clusters.  It should be noted that the images that are not 

1. Let C={C1, C2, …, Cn} denote n clusters created in the initial 
semantic clustering phase. 

2. Let NewC denote clusters after the merging process.  Initially, 
set NewC = {NewC1} where NewC1= C1.

3. For each Ci (i=2, 3, …, n)
3.1 Set num = |NewC|, where | | represents the number of

clusters in NewC.
3.2 Set Flag, a vector of num elements, to all 1’s. 
3.3 For each j (j=1, …, num)

   If NewCj and Ci can be merged, enlarge Ci by adding all 
   images in NewCj and set the jth element of Flag as 0’s. 

3.4 If Flagj is 0, remove NewCj from NewC.
3.5 Add Ci to NewC.

1 2
4 35

Fig. 1: Region division scheme
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returned or not positively labeled in any query session are 
not placed to any merged cluster.  Therefore, these non-
clustered images are assigned to the appropriate clusters, as 
summarized in the next phase. 

2.3.3. Addition of Non-clustered Images 
To reduce the computational cost, we use the 36 features of 
region 5 of each image to calculate cluster related distances 
since region 5 usually has a higher probability to include an 
important object in an image.  Specifically, the cluster 
center is computed as the average of 36 features of all 
images in the cluster.  The threshold (addThresh) for adding 
a non-clustered image to a cluster is computed as one half of 
the average of all paired inter-class distances.  For each non-
clustered image, we compute its distance to each of the 
cluster centers.  We assign each non-clustered image to its 
nearest non-negatively marked cluster.  That is, we don’t 
add the non-clustered image to a cluster if it was marked as 
being negatively related to any of the queries related to that 
cluster.  We also include a maximum distance threshold 
(addThresh) that an image can be from a cluster before 
allowing it to join a cluster.  If a non-clustered image 
reaches this point, it creates a new cluster comprised of only 
the image itself.   

2.4. Image Retrieval 

Image retrieval consists of three steps: search space 
reduction, search space ranking, and refinement.  The first 
step finds the candidate clusters to reduce the search space.  
The second step ranks the images in candidate clusters.  The 
third step updates pMatrix, the semantic distance measure, 
and the search space. 

2.4.1. Search Space Reduction 
We first apply the “bucket” concept from the kd-tree to 
quickly find the k (initially set to be 15) nearest neighbors in 
logarithmic time.  We then find all candidate clusters that 
contain at least one of the 15 nearest neighbors.  If 
applicable, we also eliminate the candidate clusters that 
have more than 2 images being negatively related to the 
query.  If the number of images in the remaining candidate 
clusters is less than the number of images we wish to return 
per testing iteration, we increase the number of nearest 
neighbors we search by 2 and repeat the above steps until a 
sufficient number of candidate images are collected. 

2.4.2. Search Space Ranking 
Search space reduction significantly reduces the size of the 
candidate image pool for a query.  Search space ranking 
aims to find the most matched images from the candidate 
pool based on image features and affinity learned from the 
training process.  To this end, we use pMatrix and fVec to 
compute the affinity relation Aq,i between query image q and 
each database image i by: 
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where rows is a set containing all rows in pMatrix whose qth

and ith columns having positive values. We then normalize 
Aq,i as NAq,i by dividing Aq,i by the sum of affinity relations 
between q and all database images.  Finally, we compute the 
semantic similarity SSq,c between query image q and each 
candidate image c by equations (2) through (4): 
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where fc(ot) is the tth feature of image c, fq(ot) is the tth feature
of query q, and T is the length of the image features.  It 
should be noted that some values of SSq,c may be 0’s since 
their affinity relations with the query may not have been 
explored during the training process.   In this case, the 
Euclidean distance is applied on the image features to 
compute the similarity scores to break the tie.  The images 
with larger semantic scores indicate a higher similarity with 
the query and the images with lower Euclidean distances 
indicate a higher similarity with the query.  Top images are 
returned based on the positive semantic scores and the 
Euclidean distance. 

2.4.3. Refinement 
The refinement step employs the user’s RF on the retrieved 
images to update pMatrix and fVec as described in section 
2.2.  It also updates the affinity relations between query and 
all database images using a maximum of 5 positive images 
not returned in the previous iterations.  Specifically, the 
normalized affinity relations between each of these positive 
images and all database images are computed.  These 
relations are then used to update the normalized affinity 
relation between query and all database images as follows: 
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where ip j
NA ,  denotes the normalized affinity relation 

between the positively labeled image Pj (j=1 to 5) and 
image i, and NAq,i denotes the affinity relation between 
query q and image i.  A maximum of 5 positive images is 
chosen to keep this update process fast.  The candidate 
image pool is finally re-calculated by considering the new 
negative images returned in the current iteration. 

3. EXPERIMENTAL RESULTS 

We test our CBIR system on three data sets: 2000-Flickr 
DB, 6000-COREL DB, and the combined 2000-Flickr and 
6000-COREL DB. Flickr and COREL DBs contain 20 and 
60 categories with 100 images per category, respectively.  
To test the online retrieval performance, we perform 5 
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iterations per query and return top 25 images per iteration.  
The retrieval precision is computed as the ratio of the 
relevant images to the total returned images. 

In our system, we assign a weight of 44% to region 5 
and a weight of 14% to the other 4 regions.  We also assign 
a weight of 40% to the color features and a weight of 30% 
to the edge and texture features for each region.  These 
weights are empirically selected to be optimal for the task. 

We design the first experiment to show the retrieval 
performance using 5% randomly chosen images to capture 
users’ semantic concepts and build initial clusters.  
Specifically, we test with 6 and 8 training iterations, with 
both using 40 returned images.  Fig. 3 shows our results on 
each DB with the two varying number of training iterations.  
Since no significant gains in precision are made after the 3rd

iteration, we only show the average retrieval precision for 
the first 3 iterations.  It clearly demonstrates the retrieval 
performance is better when the dataset is smaller since it is 
easier to learn semantic relations in a small database.  The 
retrieval performance also significantly improves when the 
number of training iterations increases.  Therefore, we use 8 
iterations for each training image to build initial clusters.
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Fig. 3: Results using 6 and 8 training iterations on 3 DBs 
We compare our system with memory-based [2], log-

based [3], virtual-feature-based [4], manifold-based [5], and 
collaborative learning-based [8] systems on two larger DBs.  
Fig. 4 shows the average retrieval precision of 6 systems on 
the 6000-COREL DB and the combined DB.  All these 
systems use 8 iterations and 40 returned images per iteration 
for each training image to build their perspective learning 
base.  However, our system uses 5% of database images in 
training and the other systems use 10% of database images 
in training.  Our system outperforms the peers on both DBs.  
Comparing to the second best, collaborative learning-based 
system, our system makes 2.26% and 4.75% improvement 
on 6000 and 8000 images, respectively.  It should be 
mentioned that this improvement is achieved by using a half 
of the training images to build the initial learning base.  This 
minimum learning mechanism is preferred since little user’s 
involvement is required in the training process.  Our 
retrieval time is also faster than its peers due to the 
reduction of the search space and the simple clustering and 
update process.  Using 10% of database images as the 
training images, our system further makes a 2.45% and 
4.38% improvement on 6000 and 8000 images, 
respectively.
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Fig. 4: Comparison of 6 systems on 6000 images (left) and 
8000  images (right) 

4. CONCLUSIONS AND FUTURE WORK

We propose a novel image clustering approach that 
constructs clusters by capturing users’ semantic concepts.  
Major contributions are: 1) Applying the learning 
mechanism to capture users’ semantic concepts in clusters.  
2) Applying local and dynamic clustering to create and 
update clusters based on the users’ labeled retrieved images.  
3) Updating the semantic similarity measure using the user’s 
RF.  4) Reducing the search space to find the candidate 
image pool for a query.  Experimental results show that our 
system achieves better performance with a larger training 
iteration number and a larger training set.  It outperforms 
peer systems even using a half of the training images. 

In the future, we will improve the system to make it 
work well when a small amount of erroneous feedback is 
involved.  We will also improve our clustering technique to 
group semantic related images faster and more reliable. 

.
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