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Abstract

We study the Fibonacci sets from the point of view of their quality with re-
spect to discrepancy and numerical integration. Let {bn}∞n=0 be the sequence
of Fibonacci numbers. The bn-point Fibonacci set Fn ⊂ [0, 1]2 is defined as
Fn := {(µ/bn, {µbn−1/bn})}bnµ=1, where {x} is the fractional part of a number
x ∈ R. It is known that cubature formulas based on Fibonacci set Fn give
optimal rate of error of numerical integration for certain classes of functions
with mixed smoothness.

We give a Fourier analytic proof of the fact that the symmetrized Fi-
bonacci set F ′n = Fn ∪ {(p1, 1 − p2) : (p1, p2) ∈ Fn} has asymptotically
minimal L2 discrepancy. This approach also yields an exact formula for this
quantity, which allows us to evaluate the constant in the discrepancy esti-
mates. Numerical computations indicate that these sets have the smallest
currently known L2 discrepancy among two-dimensional point sets.

We also introduce quartered Lp discrepancy which is a modification of the
Lp discrepancy symmetrized with respect to the center of the unit square. We
prove that the Fibonacci set Fn has minimal in the sense of order quartered
Lp discrepancy for all p ∈ (1,∞). This in turn implies that certain two-
fold symmetrizations of the Fibonacci set Fn are optimal with respect to the
standard Lp discrepancy.
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1. Introduction

1.1. Discrepancy

Let PN be a set of N points in the unit cube [0, 1]d in dimension d. The
extent of uniform distribution of PN can be measured by the discrepancy
function:

D(PN ,x) := #
{
PN ∩ [0,x)

}
−N · |[0,x)|, (1.1)

where x = (x1, . . . , xd), [0,x) =
d∏
j=1

[0, xj), and | · | denotes the Lebesgue

measure. The Lp norm of the above discrepancy function, usually called
the Lp discrepancy, is a benchmark that one uses to evaluate the quality of
a particular set of N points. The fundamental problem of the discrepancy
theory is to construct sets with small Lp discrepancy.

The main principle of discrepancy theory, or theory of irregularities of
distribution, states that the quantity

D(N, d)p := inf
PN
‖D(PN ,x)‖p

must necessarily go to infinity with N when d ≥ 2. We refer to Kuipers
and Niederreiter [22], Beck and Chen [1], Matoušek [25], and Chazelle [5] for
detailed surveys. The principal lower estimates for D(N, d)p are:

K. Roth’s Theorem.([28], 1954) In all dimensions d ≥ 2, we have

D(N, d)2 ≥ C(d)(logN)
d−1
2 , (1.2)

where C(d) is a positive constant that may depend on d.

W. Schmidt’s Theorem. ([31], 1972) In dimension d = 2,

D(N, 2)∞ ≥ C logN, (1.3)

where C is a positive absolute constant.

Both bounds (1.2) and(1.3) are known to be sharp in the sense of order,
see e.g. van der Corput [10], Davenport [11], Roth [29] and Frolov [15]
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for more details. One of the most famous (and relevant to our discussion)
examples demonstrating sharpness of (1.3) is the irrational lattice:

AN(α) :=
{( µ

N
, {µα}

)}N
µ=1

, (1.4)

where α is an irrational number and {x} is the fractional part of the number
x. If the partial quotients of the continued fraction of α are bounded, then
the L∞ discrepancy of this set is of the order logN (see, e.g. [25], [20]). The
idea of this example goes back to Lerch, 1904 [24].

In the present paper we study the distributional properties of the closely
related Fibonacci sets. These sets are known in the theory of Quasi-Monte
Carlo methods under the names Fibonacci lattice points sets or Fibonacci
lattice rules, but we shall adhere to the abbreviated name. Let {bn}∞n=0 be
the sequence of Fibonacci numbers:

b0 = b1 = 1, bn = bn−1 + bn−2, for n ≥ 2. (1.5)

The bn-point Fibonacci set Fn ⊂ [0, 1]2 is defined as

Fn := {(µ/bn, {µbn−1/bn})}bnµ=1. (1.6)

Obviously, for large n, the set Fn is close to the irrational lattice AN(α) with

N = bn and α =

√
5− 1

2
, i.e., the reciprocal of the golden section. It is well

known (see [26]) that

‖D(Fn,x)‖∞ ≤ C log bn, (1.7)

hence, according to Schmidt’s bound (1.3), Fibonacci sets also have optimal
L∞ discrepancy.

Finally, we mention another important example of a low-discrepancy con-
struction: the van der Corput (or Hammersley) “digit-reversing” set, intro-
duced in [10], whose L∞ discrepancy is of the order logN (see [25] for a
geometric proof). While this set is not directly related to our discussion, we
shall often use it as a point of comparison.

1.2. Numerical integration

It is well known (see, for instance, [36]) that the L∞ discrepancy (as well
as other notions of discrepancy) of a finite set is closely related to the error
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of numerical integration with knots at the given points. We shall discuss this
topic in more detail here. The quality of a set of N points for numerical
integration can be measured in the following standard way. For a certain
function class W compare the error of numerical integration with knots from
the given set with optimal error for cubature formulas with N knots. We
give a precise formulation of the problem. Numerical integration seeks good
ways of approximating an integral

∫
Ω
f(x)dµ by an expression of the form

ΛN(f, ξ) :=
N∑
j=1

λjf(ξj), ξ = (ξ1, . . . , ξN), ξj ∈ Ω, j = 1, . . . , N. (1.8)

It is clear that f has to be integrable and defined at the points ξ1, . . . , ξN .
The expression (1.8) is called a cubature formula (Λ, ξ) (in our case Ω ⊂ R2)
with knots ξ = (ξ1, . . . , ξN) and weights Λ = (λ1, . . . , λN). For a function
class W the error of the cubature formula ΛN(·, ξ) is defined by

ΛN(W, ξ) := sup
f∈W

∣∣∣∣∫
Ω

fdµ− ΛN(f, ξ)

∣∣∣∣ . (1.9)

In the case of equal weights λj = 1/N we denote this error by Λe
N(W, ξ). Set

δN(W ) := inf
λ1,...,λN
ξ1,...,ξN

ΛN(W, ξ); δeN(W ) := inf
ξ1,...,ξN

Λe
N(W, ξ)

to be the best errors achieved by cubature formulas with N knots.
With these definitions at hand, the relation between the L∞ discrepancy

of a set PN ⊂ [0, 1]2 and the error of numerical integration with knots at PN
is straightforward. Define the following class of functions

χd := {χ[0,x](y) :=
d∏
j=1

χ[0,xj ](yj), xj ∈ [0, 1], j = 1, . . . , d},

where χ[0,u](v) is a characteristic function of the interval [0, u]. Then it is
clear that

Λe
N(χd,PN) = N−1‖D(PN ,x)‖∞. (1.10)

We now define classes of (periodic) functions with bounded mixed deriva-
tive, which arise naturally in numerical integration. For r > 0, let

Fr(t) := 1 + 2
∞∑
k=1

k−r cos(2πkt− rπ/2). (1.11)
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For x = (x1, x2) denote Fr(x) := Fr(x1)Fr(x2) and MW r
p := {f : f = ϕ∗Fr :

‖ϕ‖p ≤ 1}, where ∗ means convolution and ‖ · ‖p is the standard Lp norm.
It is known (see, for instance, survey [36]) that the Fibonacci sets Fn are

also good for numerical integration of functions from the classes MW r
p . The

following known result gives the order of Λe
bn

(MW r
p ,Fn) for all parameters

1 ≤ p ≤ ∞, r > 1/p. In our paper, “�” stands for “of the same order of
magnitude as” and “�” stands for “less than a constant multiple of”.

Theorem 1.1. We have

Λe
bn(MW r

p ,Fn) �


b−rn (log bn)1/2, 1 < p ≤ ∞, r > max

(
1
p
, 1

2

)
;

b−rn log bn, p = 1, r > 1;
b−rn (log bn)1−r, 2 < p ≤ ∞, 1

p
< r < 1

2
;

b−rn ((log bn)(log log bn))
1
2 , 2 < p ≤ ∞, r = 1/2.

(1.12)

The following theorem gives the lower bounds for optimal rates of numerical
integration (again, see survey [36]).

Theorem 1.2. The following lower bound is valid for any cubature formula
(Λ, ξ) with N knots (r > 1/p)

ΛN(MW r
p , ξ) ≥ C(r, p)N−r(logN)

1
2 , 1 ≤ p <∞.

The lower bounds provided by Theorem 1.2 and the upper bounds from The-
orem 1.1 show that the Fibonacci cubature formulas Λe

bn
(·,Fn) are optimal

(in the sense of order) among all cubature formulas in the case 1 < p < ∞,
r > max(1/p, 1/2):

δbn(MW r
p ) � Λe

bn(MW r
p ,Fn) � b−rn (log bn)1/2.

We shall also make a remark in Section 2 which shows that the sets Fn are
much better than their siblings AN(α) from the point of view of numerical
integration of smooth functions.

It is well known (see, e.g., [36], Proposition 1.2) that the L∞ discrepancy
governs integration errors for the class MW 1

1 :

c1(d)Λe
N(χd, ξ) ≤ Λe

N(MW 1
1 , ξ) ≤ c2(d)Λe

N(χd, ξ). (1.13)
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This, together with inequality (1.7), yields the relation

Λe
bn(MW 1

1 ,Fn) � b−1
n log bn, (1.14)

that was not covered by Theorem 1.1. All these results motivate us to conduct
a thorough study of the Fibonacci sets.

1.3. Optimal L2 vs. L∞ discrepancies

At this point we would like to demonstrate that the issue of constructing
sets with low L2 discrepancy is even more subtle than in the case of L∞.
This situation is in natural contrast with the lower discrepancy estimates,
where L2 bounds are generally much simpler than L∞.

One may be tempted to think that the optimality of the Fibonacci set
Fn with respect to L2 discrepancy may be implied by Theorems 1.1 and
1.2. However, this is not the case! While there is a direct relation between
Lp discrepancy for 1 < p < ∞ and the error of cubature formulas for the
(non-periodic) function classes MẆ 1

p′(Ωd) (see [36], formula (1.15)), there is
no such connection for the (periodic) classes MW 1

p′ treated in Theorem 1.1.

Only the general equivalence δN(MW 1
p′) � δN(MẆ 1

p′(Ωd)) between the rates
of decay of errors of optimal cubature formulas for these classes is available
(see Theorem 1.1 in [36] and the remark thereafter), which is not enough to
derive that Fn has optimal L2 discrepancy.

Unfortunately, the L2 discrepancy of the “classical” examples either fails
to be of optimal order (the L2 discrepancy of the N -point van der Corput set
is of order logN , not

√
logN , [16]), or requires much more delicate arguments

than L∞ (as in the case of the Fibonacci set Fn, [33]), or is even unknown
(lattices AN(α) for general α).

However, discrepancy theory provides several standard ways to modify
these sets in order to achieve the smallest possible order of the L2 discrepancy
and/or simplify the calculations:
1. Cyclic shifts. The translation idea, originated in K. Roth’s papers [29],
[30], was applied probabilistically to the van der Corput set. A deterministic
example of such a shift was recently constructed by Bilyk [2].
2. Digit scrambling (digit shifts). This approach is introduced in [6] and one
may refer to [25] for a comprehensive discussion and interesting constructive
examples. In the past decade substantial work in this direction has been
done in the context of two-dimensional low discrepancy sets, see [21], [9],
[12], [3], [13].
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3. Davenport’s Reflection Principle. This idea in various guises is explored
in the current paper. Roughly speaking, it states that if a finite set PN has
low L∞ discrepancy, then symmetrizing this set produces a new set of low
L2 discrepancy. This approach was initiated by Davenport [11, 1956] in the
case of irrational lattice. Symmetrization was subsequently used by Proinov
[27], Chaix and Faure [4] for the generalized van der Corput sequences, Chen
and Skriganov [8] for the van der Corput set, Larcher and Pillichshammer
[23] for (0,m, 2)-nets and (0, 1)-sequences in base 2, and by other authors.

The original Davenport’s construction historically was the first example
demonstrating the sharpness of (1.2) (in dimension d = 2). His construction
involved an irrational lattice AN(α), where α is an irrational number with
bounded partial quotients, symmetrized with respect to the vertical line x =
1
2
. For a long time it was not clear whether this symmetrization is really

necessary. The first partial answer appeared more than 20 years later. In
1979, Sós and Zaremba [33] proved that when all the partial quotients of the
(finite or infinite) continued fraction of α are equal, then the set A(α) has
optimal L2 discrepancy. In particular, this result covers the Fibonacci set
Fn and the irrational lattice AN((

√
5− 1)/2) – in these cases all the partial

quotients are equal to 1:

‖D(Fn,x)‖2 � ‖D(Abn((
√

5− 1)/2),x)‖2 �
√

log bn. (1.15)

It is also suggested in the same paper that perhaps the L2 discrepancy is
not optimal for some other values of α. This means that the L2 discrepancy
depends on much finer properties of α than simply the boundedness of its
partial quotients. The situation with Lp discrepancy is even less clear. These
issues will be further explored in our upcoming work.

To further convince the reader of the difficulty of L2 constructions we
should mention that in higher dimensions (d ≥ 3) explicit examples of sets
with optimal order of L2 discrepancy have been constructed only in the last
few years by Chen and Skriganov [7] (simplified in [9] and extended to Lp for
p 6= 2 by Skriganov [32]). However, the constant in the leading term of their
estimate is rather large. In the two-dimensional case, Faure, Pillichshammer,
Pirsic, and Schmid [13] find an effective value of this constant by considering
the L2 discrepancy of the so-called generalized Hammersley point sets.

1.4. Main results

In the present paper, we apply Davenport’s symmetrization idea to the
Fibonacci set. In Section 2 we prove that the symmetrized Fibonacci set F ′n
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has minimal in the sense of order L2 discrepancy, i.e. (see Theorem 2.8)

‖D(F ′n,x)‖2 ≤ C
√

log bn. (1.16)

This is achieved by a meticulous examination of the Fourier coefficients of
the function D(F ′n,x). This result may seem superfluous in view of the
aforementioned result (1.15) of Sós and Zaremba. Nevertheless, both the
result and the method present several advantages.

First of all, we are able to provide an exact formula allowing one to
compute the precise value of L2 norm of the discrepancy function (Theorem
2.11). This formula enabled us to computationally evaluate the constant C
in the upper bound (1.16). We show that the constant we get is around
0.176006, which is better than the best previously known constant in the L2

discrepancy upper bounds, 0.17907, provided in [13].
Unfortunately, at present we cannot compute this constant for the non-

symmetrized Fibonacci set Fn, since an analog of formulas (2.58)-(2.59) from
Theorem 2.11 is not available. Technically speaking, in the non-symmetrized
case certain difficulties arise in the computation of the coefficient D̂(Fn,0)

(cf. Lemma 2.2) as well as D̂(Fn,k) with k = (k1, 0) (cf. Lemma 2.5). This
is perhaps not surprising: Davenport introduced his technique precisely to
take care of the zero-order Fourier coefficient. In addition, in the case of the
van der Corput set it is exactly this coefficient D̂(Vn,0) =

∫
D(Vn,x) dx that

is responsible for the large L2 norm, see [16], [3], [2].
Finally, the proof of Sós and Zaremba was quite complicated and involved

numerous ideas from number theory and probability. At the same time, our
proof, which only relies on computing the Fourier coefficients of the discrep-
ancy function, is much more transparent and opens the door to investigating
more general lattices, which is the theme of our ongoing work.

In Section 3 we further develop the symmetrization idea and introduce
quartered Lp discrepancy: a version of the Lp discrepancy symmetrized with
respect to the center of the unit square. We prove that the Fibonacci set Fn
has minimal in the sense of order quartered Lp discrepancy for all p ∈ (1,∞).
While these result by itself may seem artificial, it leads to the construction
of a “two-fold” symmetrization of the Fibonacci set F symn , which has optimal
standard Lp discrepancy

‖D(F symn ,x)‖p ≤ C(p)
√

log bn (1.17)

for all p ∈ (1,∞). We note that constructions of sets with optimal Lp
discrepancy for p 6= 2 are even more scarce than for p = 2. In particular, we
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do not know if the standard Fibonacci set Fn satisfies (1.17). The methods
of Fourier analysis, including Littlewood-Paley theory, are applied to prove
these results.

This research was supported by the National Science Foundation Grants
DMS-0906260 and DMS-0801036.

2. The L2 discrepancy of the symmetrized Fibonacci set

We shall start by briefly discussing the L∞ discrepancy of the Fibonacci
set Fn = {(µ/bn, {µbn−1/bn})}bnµ=1 and its similarities to the irrational lat-
tice, as well as their differences, from the point of view of discrepancy and
numerical integration.

As we stated in the introduction, it is a classical and over a century old
result [24] that the irrational lattice

AN(α) :=
{( µ

N
, {µα}

)}N
µ=1

has sharp L∞ norm if the partial quotients of the continued fraction of α are

bounded. In the special case when N = bn and α =

√
5− 1

2
(the reciprocal

of the golden section), the set AN(α) is closely related to the set Fn and
satisfies the estimate

‖D(An(α),x)‖∞ � log bn. (2.18)

The sets Fn and AN(α) are close to each other in the following sense.
For 1 ≤ µ ≤ bn, the x-coordinates of the µth points of Fn and An(α) are the
same and the differences between the y-coordinates of these points are small.
This follows from the well-known inequality∣∣∣∣α− bn−1

bn

∣∣∣∣ ≤ 1

2b2
n

. (2.19)

For completeness we give a simple proof of the above inequality. Consider
P (x) = x2 + x− 1. Then P (α) = 0 and |P (bn−1/bn)| = b−2

n . We have

|P (bn−1/bn)− P (α)| = P ′(ξ)|bn−1/bn − α|,
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ξ ∈
(
bn−1

bn
, α

)
. It is easy to see that

1

2
≤ bn−1

bn
≤ 2

3
and

1

2
≤ α ≤ 2

3
.

Therefore,

2 ≤ |P ′(ξ)| ≤ 7

3
. (2.20)

This implies (2.19). Using (2.19) we obtain

|{µbn−1/bn} − {µα}| = |µbn−1/bn − µα| ≤
µ

2b2
n

≤ 1

2bn
. (2.21)

(The identity above may be violated only when µ = bn, but a single point
bears no significance on the results.)

As mentioned earlier, it is well known [26] that Fibbonaci sets have opti-
mal L∞ discrepancy:

‖D(Fn,x)‖∞ � log bn, n ≥ 2 (2.22)

Inequality (2.21) and the following simple known lemma show that this bound
can also be derived as a perturbation of (2.18).

Lemma 2.1. Let PN = {pk}Nk=1 ⊂ [0, 1]d and QN = {qk}Nk=1 ⊂ [0, 1]d be such
that ‖pk − qk‖∞ ≤ δ, k = 1, . . . , N. Then∣∣‖D(PN ,x)‖∞ − ‖D(QN ,x)‖∞

∣∣ ≤ Nδd.

The bounds (2.18) and (2.22) show that the sets Fn andAn(α) are equally
good from the point of view of the L∞ discrepancy. Theorem 1.1 from the
introduction shows that the sets Fn are good for numerical integration. We
now demonstrate by a simple example that sets An(α) are not good for
numerical integration of functions with high smoothness. Indeed, consider a
function

f(x1, x2) := e2πix2 .

It is easy to check that f ∈ MW r
p for all r and 1 ≤ p ≤ ∞. The error of

numerical integration of f using An(α) with equal weights
1

bn
is

∣∣∣∣∣ 1

bn

bn∑
µ=1

e2πiµα

∣∣∣∣∣ =
1

bn

∣∣∣∣1− e2πibnα

1− e2πiα

∣∣∣∣ .
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Using (2.20) we get
3

7
· 1

b2
n

≤
∣∣∣∣α− bn−1

bn

∣∣∣∣ ≤ 1

2b2
n

.

This implies for n ≥ 3

|1− e2πibnα| ≥ | sin 2π{bnα}| ≥
2

π
· 2πbn ·

3

7
· 1

b2
n

=
12

7
· 1

bn
.

Therefore, the error of numerical integration of f is bounded from below by
cb−2
n , i.e. the error estimates do not improve when the smoothness r > 2. It

means that the cubature formula

Qn,α(g) :=
1

bn

∑
q∈An(α)

g(q)

has a saturation property for r > 2. We note that this example resonates
with ideas explored in [17] and [37].

We now turn our attention to the estimates for the L2 discrepancy. In-
spired by the Davenport’s Reflection Principle [11], described in the intro-
duction, and the similarities between the Fibonacci and irrational lattices,
we symmetrize Fn to a 2bn-point set

F ′n := {(p1, p2) ∪ (p1, 1− p2) : (p1, p2) ∈ Fn}. (2.23)

Its discrepancy function is

D(F ′n,x) := #{F ′n ∩ [0, x1)× [0, x2)} − 2bnx1x2,

where x = (x1, x2) ∈ (0, 1]2. Rewriting it to

D(F ′n,x) =
∑

p=(p1,p2)∈Fn

[
χ[p1,1)×[p2,1)(x) + χ[p1,1)×[1−p2,1)(x)

]
− 2bnx1x2,

and computing the Fourier coefficients of the D(F ′n,x) yields

D̂(F ′n,k) =
∑

p=(p1,p2)∈Fn

[
χ̂[p1,1)×[p2,1)(k) + χ̂[p1,1)×[1−p2,1)(k)

]
− ̂2bnx1x2

=
∑
p∈Fn

[ ∫ 1

0

∫ 1

0

χ[p1,1)×[p2,1)(x1, x2)e−2πik·xdx1dx2
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+

∫ 1

0

∫ 1

0

χ[p1,1)×[1−p2,1)(x1, x2)e−2πik·xdx1dx2

]
−2bn

∫ 1

0

∫ 1

0

x1x2e
−2πik·xdx1dx2

=
∑
p∈Fn

[ ∫ 1

p1

e−2πik1x1dx1

∫ 1

p2

e−2πik2x2dx2

+

∫ 1

p1

e−2πik1x1dx1

∫ 1

1−p2
e−2πik2x2dx2

]
−2bn

∫ 1

0

x1e
−2πik1x1dx1

∫ 1

0

x2e
−2πik2x2dx2.

(2.24)

Note that
bn∑
µ=1

e−2πilµ/bn =

{
bn, l ≡ 0 (mod bn),
0, l 6≡ 0 (mod bn).

(2.25)

Let L(n) := {k = (k1, k2) ∈ Z2 : k1 + bn−1k2 ≡ 0 (mod bn)}, then

bn∑
µ=1

e−2πi(k1+bn−1k2)µ/bn =

{
bn, (k1, k2) ∈ L(n),
0, (k1, k2) 6∈ L(n).

(2.26)

Now let us consider different cases:

Case 1. k1 = 0, k2 = 0. We have the following lemma:

Lemma 2.2. D̂(F ′n,0) = −1

2
.

Proof. From (2.24) we get

D̂(F ′n,0) =
∑
p∈Fn

[
(1− p1)(1− p2) + (1− p1)p2

]
− bn

2

=
∑
p∈Fn

(
1− p1)− bn

2

=
bn∑
µ=1

(1− µ/bn)− bn
2
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= bn −
bn(bn + 1)

2bn
− bn

2

= −1

2
. (2.27)

Case 2. k1 6= 0, k2 6= 0.
In this case

D̂(F ′n,k) =
−1

4π2k1k2

∑
p∈Fn

[
(1− e−2πik1p1)(1− e−2πik2p2)

+(1− e−2πik1p1)(1− e−2πik2(1−p2))
]

+
bn

2π2k1k2

=
−1

4π2k1k2

∑
p∈Fn

[
(1− e−2πik1p1)(1− e−2πik2p2)

+(1− e−2πik1p1)(1− e2πik2p2)
]

+
bn

2π2k1k2

. (2.28)

Then we have the following lemma:

Lemma 2.3. If k1 6= 0, k2 6= 0, then

D̂(F ′n,k) =
bn

2π2k1k2

(2.29)

provided that at least one of k1 and k2 is 0 modulo bn.

Proof. Without loss of generality assume k1 ≡ 0 (mod bn), then

e−2πik1p1 = e
−2πik1µ

bn = 1.

So from (2.28) we get

D̂(F ′n,k) =
bn

2π2k1k2

. (2.30)

Lemma 2.4. Assume k1 6≡ 0 (mod bn) and k2 6≡ 0 (mod bn), then

D̂(F ′n,k) =



−bn
2π2k1k2

, k1 + k2bn−1 ≡ 0, k1 − k2bn−1 ≡ 0,

−bn
4π2k1k2

, k1 + k2bn−1 ≡ 0, k1 − k2bn−1 6≡ 0,

−bn
4π2k1k2

, k1 + k2bn−1 6≡ 0, k1 − k2bn−1 ≡ 0,

0, k1 + k2bn−1 6≡ 0, k1 − k2bn−1 6≡ 0,

(2.31)

where all congruences are taken modulo bn.
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Proof. Since by (2.25)
∑

p∈Fn e
±2πxikjpj = 0 for j = 1, 2, we can rewrite

(2.28) as

D̂(F ′n,k) =
−1

4π2k1k2

∑
p∈Fn

[
2 + e−2πi(k1p1+k2p2) + e−2πi(k1p1−k2p2)

]
+

bn
2π2k1k2

=
−1

4π2k1k2

∑
p∈Fn

[
e−2πi(k1p1+k2p2) + e−2πi(k1p1−k2p2)

]
=

−1

4π2k1k2

bn∑
µ=1

[
e
−2πiµ(k1+k2bn−1)

bn + e
−2πiµ(k1−k2bn−1)

bn

]
. (2.32)

If both k1 + k2bn−1 ≡ 0 (mod bn) and k1 − k2bn−1 ≡ 0 (mod bn) hold, i.e.
(k1, k2) ∈ L(n) and (k1,−k2) ∈ L(n), we get

D̂(F ′n,k) =
−bn

2π2k1k2

. (2.33)

Note that for odd bn the congruences k1+k2bn−1 ≡ 0 (mod bn), k1−k2bn−1 ≡
0 (mod bn) imply k1 ≡ 0 (mod bn) that violates the assumptions of Lemma
3.3. Thus this case is possible only for even bn.

If only one of k1 + k2bn−1 ≡ 0 (mod bn), k1− k2bn−1 ≡ 0 (mod bn) holds,
or in other words only one of (k1, k2), (k1,−k2) is in L(n), then

D̂(F ′n,k) =
−bn

4π2k1k2

. (2.34)

If k1 + k2bn−1 6≡ 0 (mod bn) and k1− k2bn−1 6≡ 0 (mod bn), i.e. both (k1, k2)
and (k1,−k2) are not in L(n), then we get

D̂(F ′n,k) = 0. (2.35)

Case 3. k1 6= 0, k2 = 0. We have the following lemma:

Lemma 2.5. If k1 6= 0, k2 = 0,

D̂(F ′n,k) =


bn

2πik1

, k1 ≡ 0 (mod bn),

0, k1 6≡ 0 (mod bn).
(2.36)
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Proof. We obtain from (2.24),

D̂(F ′n,k) =
−1

2πik1

∑
p∈Fn

[
(1− e−2πik1p1)(1− p2) + (1− e−2πik1p1)p2

]
+

bn
2πik1

=
−1

2πik1

∑
p∈Fn

[
1− e−2πik1p1

]
+

bn
2πik1

. (2.37)

If k1 ≡ 0 (mod bn), then e−2πik1p1 = 1, thus

D̂(F ′n,k) =
bn

2πik1

. (2.38)

If k1 6≡ 0 (mod bn), then
∑
p∈Fn

e−2πik1p1 = 0, hence

D̂(F ′n,k) = 0. (2.39)

Case 4. k1 = 0, k2 6= 0. We have the following lemma:

Lemma 2.6. If k1 = 0, k2 6= 0,

D̂(F ′n,k) =


bn

2πik2

, k2 ≡ 0 (mod bn),

0, k2 6≡ 0 (mod bn).
(2.40)

Proof. From (2.24) we obtain

D̂(F ′n,k) =
−1

2πik2

∑
p∈Fn

[
(1− p1)(1− e−2πik2p2) + (1− p1)(1− e2πik2p2)

]
+

bn
2πik2

=
−1

2πik2

∑
p∈Fn

[
(1− p1)(2− e−2πik2p2 − e2πik2p2)

]
+

bn
2πik2

.

If k2 ≡ 0 (mod bn), then e±2πik2p2 = 1, and

D̂(F ′n,k) =
bn

2πik2

. (2.41)
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If k2 6≡ 0 (mod bn), then
∑
p∈Fn

e±2πik2p2 = 0, and we get

D̂(F ′n,k) =
−1

2πik2

∑
p∈Fn

[
2− 2p1 + p1e

−2πik2p2 + p1e
2πik2p2

]
+

bn
2πik2

=
−1

2πik2

bn∑
µ=1

[
2− 2

µ

bn
+
µ

bn
e−

2πik2µbn−1
bn +

µ

bn
e

2πik2µbn−1
bn

]
+

bn
2πik2

=
−1

2πik2

[
2bn − 2bn − 1 +

bn∑
µ=1

(
µ

bn
e−

2πik2µbn−1
bn +

µ

bn
e

2πik2µbn−1
bn

)]

=
1

2πik2

+
−1

2πik2

[
bn−1∑
µ=0

(
µ

bn
e−

2πik2µbn−1
bn +

µ

bn
e

2πik2µbn−1
bn

)
+ 2

]
.

(2.42)

Let us set

f(x) =
bn−1∑
µ=0

e
2πiµx
bn =

e2πix − 1

e
2πix
bn − 1

.

On one hand,

f ′(x) =
bn−1∑
µ=0

2πiµ

bn
e

2πiµx
bn , (2.43)

and thus

f ′(k2bn−1) =
bn−1∑
µ=0

2πiµ

bn
e

2πiµk2bn−1
bn ; (2.44)

on the other hand

f ′(x) =
2πie2πix(e

2πix
bn − 1)− (e2πix − 1)2πi

bn
e

2πix
bn(

e
2πix
bn − 1

)2
. (2.45)

Note that e2πik2bn−1 = 1 and thus

f ′(k2bn−1) =
2πi(e

2πik2bn−1
bn − 1)(

e
2πik2bn−1

bn − 1
)2

(2.46)

=
2πi

e
2πik2bn−1

bn − 1
.
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Comparing (2.44) and (2.46) we find

bn−1∑
µ=0

µ

bn
e

2πik2µbn−1
bn =

1

e
2πik2bn−1

bn − 1
.

In the same way we get

bn−1∑
µ=0

µ

bn
e
−2πik2µbn−1

bn =
1

e
−2πik2bn−1

bn − 1
.

Therefore,

bn−1∑
µ=0

[
µ

bn
e
−2πik2µbn−1

bn +
µ

bn
e

2πik2µbn−1
bn

]
=

1

e
−2πik2bn−1

bn − 1
+

1

e
2πik2bn−1

bn − 1

=

(
e

2πik2bn−1
bn − 1

)
+
(
e
−2πik2bn−1

bn − 1
)(

e
−2πik2bn−1

bn − 1
)(
e

2πik2bn−1
bn − 1

)
=

e
2πik2bn−1

bn + e
−2πik2bn−1

bn − 2

2− e
−2πik2bn−1

bn − e
2πik2bn−1

bn

= −1.

Hence from (2.42)

D̂(F ′n,k) =
1

2πik2

+
−1

2πik2

(−1 + 2)

= 0. (2.47)

Remark 2.7. We define the sets

S1 = {(k1, k2) : k1, k2 6= 0, k1 ≡ 0 (mod bn)},
S2 = {(k1, k2) : k1, k2 6= 0, k2 ≡ 0 (mod bn)},
S3 = {(k1, 0) : k1 ≡ 0 (mod bn), k1 6= 0},
S4 = {(0, k2) : k2 ≡ 0 (mod bn), k2 6= 0},
S5 = {(k1, k2) : (k1, k2) ∈ L(n) \ {0}, k1, k2 6≡ 0 (mod bn)},
S6 = {(k1, k2) : (k1,−k2) ∈ L(n) \ {0}, k1, k2 6≡ 0 (mod bn)}.
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Based on previous lemmas, we have the following observations. The results
of lemmas 2.3, 2.4, 2.5, and 2.6 imply that for k ∈ S1 ∪ ... ∪ S6 we have

|D̂(F ′n,k)| � bn
2∏
j=1

max(|kj|, 1)

. (2.48)

In all other cases, the corresponding Fourier coefficients are equal to zero,
see (2.35), (2.39) and (2.47).

For k ∈ S1, we write k1 = lbn, where l ∈ Z \ {0}. Then |D̂(F ′n,k)| =
1

2π2|k1l|
. We deal with S2, S3, and S4 similarly. We are now ready to proceed

to the main theorem.

Theorem 2.8. For the symmetrized Fibonacci set F ′n ⊂ [0, 1]2, we have

‖D(F ′n,x)‖2 �
√

log bn. (2.49)

Proof. By Parseval’s theorem,

‖D(F ′n,x)‖2
2 = ‖D̂(F ′n,k)‖2

2 ≤ |D̂(F ′n,0)|2 +
6∑
i=1

∑
k∈Si

|D̂(F ′n,k)|2

�
∑

k∈L(n)\{0}

b2
n

2∏
j=1

max(k2
j , 1)

+
∑

(k1,−k2)∈L(n)\{0}

b2
n

2∏
j=1

max(k2
j , 1)

+2
∑
l 6=0

∑
k 6=0

1

(kl)2
+ 2

∑
l 6=0

1

l2
.

It is easy to see that the last two sums converge to some constants and the
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first two are completely similar to each other. We can thus estimate

‖D(F ′n,x)‖2
2 �

∑
k∈L(n)\{0}

b2
n

2∏
j=1

max(k2
j , 1)

. (2.50)

We now use the following lemma, see Lemma 2.1 from Chapter 4 of [35].

Lemma 2.9. Denote

Γ(N) :=
{
k = (k1, · · · , kd) ∈ Zd :

d∏
j=1

max(|kj|, 1) ≤ N
}

and
Zl :=

(
Γ(2l+1γbn) \ Γ(2lγbn)

)
∩ L(n), l = 0, 1, 2, . . . ,

then there exists an absolute constant γ > 0 such that for any n > 2

Γ(γbn) ∩
(
L(n) \ 0

)
= ∅,

and
|Zl| � 2l(l + 1) log bn, l = 0, 1, 2, . . . . (2.51)

Therefore, the summation in (2.50) can be estimated as

‖D(F ′n,x)‖2
2 �

∑
l≥0

∑
k∈Zl

1

|2l|2
, (2.52)

and using the cardinality estimate of Zl in (2.51), we get,

‖D(F ′n,x)‖2
2 �

∑
l≥0

2l(l + 1) log bn
(2l)2

= log bn
∑
l≥0

l + 1

2l

� log bn.

Hence
‖D(F ′n,x)‖2 �

√
log bn.
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Remark 2.10. In this section we symmetrize the original Fibonacci set to
obtain a 2bn−point set F ′n = {(p1, p2) ∪ {(p1, 1 − p2) : (p1, p2) ∈ Fn}. Obvi-
ously, the L∞ discrepancy of F ′n satisfies the same upper bound as Fn in the
order of magnitude and thus is optimal. Theorem 2.8 verifies the sharpness
of its L2 discrepancy.

In fact, we can also demonstrate that a 4bn−point set F ′′n = {(p1, p2) ∪
(1 − p1, p2) ∪ {(p1, 1 − p2) ∪ {(1 − p1, 1 − p2) : (p1, p2) ∈ Fn} achieves the
minimal L2 discrepancy as well. The computation is completely analogous,
and, in Case 4 (Lemma 2.6), it is much more straightforward.

Next, we derive a formula which provides the exact value of ‖D(F ′n,x)‖2.
For simplicity, we shall first assume that bn is odd, and thus S5 ∩ S6 = ∅.
We start with the contribution of k ∈ S5, using the notation introduced in
Remark 2.7. In this case, D̂(F ′n,k) = − bn

4π2k1k2
. We shall make use of the

well-known identity (see e.g. [34], page 165, ex. 15):∑
n∈Z

1

(n+ x)2
=

π2

sin2(πx)
. (2.53)

Denote k1+k2bn−1 = lbn, for l ∈ Z and toward the end of the computation
write k2 = mbn + r, where m ∈ Z and r = 1, ..., bn − 1. We have, by Lemma
2.4 ∑

k∈S5

∣∣∣D̂(F ′n,k)
∣∣∣2 =

b2
n

16π4

∑
k2 6≡0 mod bn

1

k2
2

∑
l∈Z

1

b2
n

· 1(
l − bn−1k2

bn

)2

=
1

16π2

∑
k2 6≡0 mod bn

1

k2
2 sin2

(
πbn−1k2

bn

)
=

1

16π2

bn−1∑
r=1

1

sin2
(
πbn−1r
bn

) ∑
m∈Z

1

b2
n

· 1(
m+ r

bn

)2

=
1

16b2
n

bn−1∑
r=1

1

sin2
(
πbn−1r
bn

)
· sin2

(
πr
bn

) , (2.54)

where we have used identity (2.53) in the second and the last equalities
above. It is obvious that the contribution of k ∈ S6 is identical. If bn is even,
a “correction term” 1

8b2n
arises due to the fact that S5 ∩ S6 6= ∅ (we leave the

computation to the reader).
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Using the inclusion-exclusion principle and the identity∑
l∈N

1

l2
=
π2

6
, (2.55)

we obtain by Lemma 2.3∑
k∈S1∪S2

∣∣∣D̂(F ′n,k)
∣∣∣2 = 4

∑
l1∈N,k2∈N

b2
n

4π4 · l21b2
n · k2

2

+ 4
∑

k1∈N,l2∈N

b2
n

4π4 · k2
1 · l22b2

n

−4
∑

l1∈N,l2∈N

b2
n

4π4b4
nl

2
1l

2
2

= 8 · 1

4π4
· π

2

6
· π

2

6
− 4

1

144b2
n

=
1

36

(
2− 1

b2
n

)
. (2.56)

(The multiplication by 4 above accounts for all possible choices of signs).
Finally, Lemmas 2.5 and 2.6 yield∑

k∈S3∪S4

∣∣∣D̂(F ′n,k)
∣∣∣2 = 2 · b

2
n

4π2

∑
l∈Z\{0}

1

b2
nl

2
=

1

6
. (2.57)

Putting together equations (2.54), (2.56), and (2.57), and the relation

D̂(F ′n,0) = −1

2
(Lemma 2.2) we obtain

Theorem 2.11. For n ≥ 2 we have

‖D(F ′n,x)‖2
2 =

1

8b2
n

bn−1∑
r=1

1

sin2
(
πbn−1r
bn

)
· sin2

(
πr
bn

)+
17

36
− 1

36b2
n

when bn is odd ,

(2.58)

‖D(F ′n,x)‖2
2 =

1

8b2
n

bn−1∑
r=1

1

sin2
(
πbn−1r
bn

)
· sin2

(
πr
bn

)+
17

36
+

7

72b2
n

when bn is even.

(2.59)

We should recall that the L2 discrepancy of an arbitrary N -point set can
be computed precisely using Warnock’s formula [38]. However, the fastest
known way to perform this computation requires O(N logN) steps [18], [14]
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Figure 1: The values of Sn for n ≤ 35.

(see also the discussion in §2.4 of [25]). The formulas of Theorem 2.11 re-
quire only of the order of bn � N steps to compute the discrepancy of the
symmetrized Fibonacci set F ′n.

It can be shown directly that the main term in equations (2.58) and (2.59)
is of the order log bn � n. Besides, numerical experiments indicate that

Sn =
1

b2
n

bn−1∑
r=1

1

sin2
(
πbn−1r
bn

)
· sin2

(
πr
bn

) ≈ 0.119257 · n. (2.60)

We have performed these computations using MATLAB and Maple up to
n = 35, which corresponds to N = 2b35 = 29, 860, 704. The differences
between successive values of Sn stabilize very quickly (up to the sixth deci-
mal digit starting with n = 16, see Table 1 and Figure 1). Straightforward
computations become unstable and too slow beyond this value; in particu-
lar, very time-consuming computations for 36 ≤ n ≤ 40 yielded consecutive
differences between 0.119240 and 0.119265. We plan to conduct more sophis-
ticated and precise calculations in the future. We are extremely grateful and
indebted to Douglas Meade for his help with the numerical experiments.
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Since the symmetrized Fibonacci set F ′n has N = 2bn points, we have

lim
n→∞

logN

n
= log

(√
5 + 1

2

)
≈ 0.481212.

Here “log” stands for the natural logarithm in order to compare our results
with the upper bound in [13]. Assuming that the results of the numerical
experiments are indeed true, we obtain

‖D(F ′n,x)‖2
2 =

1

8b2
n

bn−1∑
r=1

1

sin2
(
πbn−1r
bn

)
· sin2

(
πr
bn

) +O(1) (2.61)

= (0.125) · (0.119257...) · n+O(1)

= 0.030978... · logN + o(logN).

This (numerically obtained) constant 0.030978 above is smaller than the
analogous best constant, 0.03206, found in [13] for the scrambled generalized
Hammersley point sets. Hence, numerical computations indicate that among
all two-dimensional point sets, the symmetrized Fibonacci lattice has the
smallest known L2 discrepancy:

Corollary 2.12. The symmetrized Fibonacci sets F ′n with N = 2bn points
satisfy:

lim
n→∞

‖D(F ′n,x)‖2√
logN

≈
√

0.030978 ≈ 0.176006. (2.62)

The previously best known constant, obtained in [13] is slightly larger, 0.17907.
However, our corollary, strictly speaking, is not a mathematical fact, but
rather a result of experiments. The actual values of the L2 discrepancy pro-
vided by (2.58) and (2.59) for moderate values of n are somewhat larger. For

example, for n = 35, i.e. N = 29, 860, 704, we have ‖D(F ′n,x)‖2√
logN

≈ 0.240969

(see Table 1 for a full list of values).
It is worth mentioning that the best currently known constant in the

lower estimates was found by Hinrichs and Markhasin [19]. They prove that,

in our notation, D(N, 2)2 ≥
√

1

216log 2

√
logN ≈ 0.0046918 ·

√
logN .
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Table 1: The results of numerical computations

n N = 2bn Sn ‖D(F ′n,x)‖2
2

‖D(F ′n,x)‖2√
logN

15 1974 1.832556 0.701292 0.304012
16 3194 1.951812 0.716199 0.297924
17 5168 2.071070 0.731106 0.292416
18 8362 2.190327 0.746013 0.287405
19 13530 2.309584 0.760920 0.282825
20 21892 2.428840 0.775827 0.278622
21 35422 2.548097 0.790734 0.274749
22 57314 2.667354 0.805642 0.271168
23 92736 2.786611 0.820549 0.267847
24 150050 2.905868 0.835456 0.264757
25 242786 3.025125 0.850363 0.261874
26 392836 3.144382 0.865270 0.259178
27 635622 3.263639 0.880177 0.256651
28 1028458 3.382896 0.895084 0.254277
29 1664080 3.502153 0.909991 0.252043
30 2692538 3.621410 0.924898 0.249936
31 4356618 3.740667 0.939806 0.247945
32 7049156 3.859924 0.954713 0.246061
33 11405774 3.979181 0.969620 0.244275
34 18454930 4.098438 0.984527 0.242580
35 29860704 4.217695 0.999434 0.240969

3. Quartered Lp discrepancy and two-fold symmetrization

We shall consider a modification of the classical Lp discrepancy function.
For a parameter a ∈ [0, 1/2] define the following univariate characteristic
function for t ∈ [0, 1).

S(a, t) := χ[1/2−a,1/2+a](t),

and for the multivariate case x ∈ [0, 1/2]d, y ∈ [0, 1]d

S(x,y) :=
d∏
j=1

S(xj, yj).
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For a set ξ := {ξµ}Nµ=1 ⊂ [0, 1]d, define the quartered Lp discrepancy as follows

Dq(ξ,N, d)p :=

∥∥∥∥∥
N∑
µ=1

S(x, ξµ)−N
∫

[0,1]d
S(x,y)dy

∥∥∥∥∥
Lp([0,1/2]d,x)

. (3.63)

The expression inside the norm is simply the discrepancy of ξ with respect to
the box centered at 1/2 = (1/2, ..., 1/2) and opposite corners at 1/2±x. Let
us note that this notion of discrepancy does not quite measure the uniformity
of distribution of ξ as it doesn’t change when we move all points to the
same quadrant with respect to the center of the square. However, precisely
these considerations relate the quartered Lp discrepancy and standard Lp
discrepancy. We have

S(a, t) = χ[0, 1
2

+a](t)− χ[0, 1
2
−a](t).

This allows us to obtain the following inequality

Dq(ξ,N, d)p ≤ 2d‖D(ξ,x)‖p.

The quartered Lp discrepancy can be bounded from below by the Lp discrep-
ancy of a symmetrized set ξsym, that we define momentarily. We describe it
in the case d = 2. Let R1 and R2 be reflection operators that act as follows:
for u = (u1, u2) ∈ [0, 1]2

R1(u) := (1− u1, u2), R2(u) := (u1, 1− u2).

For a set ξ = {ξj}Nj=1 ⊂ [0, 1]2, define the symmetrized set

ξ̄ := ξ ∪R1(ξ) ∪R2(ξ) ∪R2(R1(ξ)).

This set contains 4N points, counting multiplicity. The sets

G1(x) :=

[
1

2
,
1

2
+ x1

)
×
[

1

2
,
1

2
+ x2

)
, G2(x) :=

[
1

2
,
1

2
− x1

)
×
[

1

2
,
1

2
+ x2

)
,

G3(x) :=

[
1

2
,
1

2
− x1

)
×
[

1

2
,
1

2
− x2

)
, G4(x) :=

[
1

2
,
1

2
+ x1

)
×
[

1

2
,
1

2
− x2

)
,

contain the same number of points of ξ̄ since we split the points in set ξ̄ on
the boundary evenly.
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We now define ξsym – the two-fold symmetrization of ξ – in the following
way: take all the points of ξ̄ that lie in the same quadrant [1/2, 1]× [1/2, 1],
then shift and rescale them to the unit square [0, 1]2:

ξsym :=

{
v = 2

(
u− 1

2

)
: u ∈ ξ̄ ∩

(
[
1

2
, 1]× [

1

2
, 1]

)}
. (3.64)

Then for the quartered Lp discrepancy of ξ̄ we have

Dq(ξ̄, 4N, 2)pp = 4

∫ 1
2

0

∫ 1
2

0

∣∣∣∣∣∣
∑

u∈ξ̄∩[ 1
2
,1]×[ 1

2
,1]

χG1(x)(u)− 4N · x1x2

∣∣∣∣∣∣
p

dx1dx2

=

∫ 1

0

∫ 1

0

∣∣∣∣∣ ∑
v∈ξsym

χ[0,z](v)−N · z1z2

∣∣∣∣∣
p

dz1dz2 = ‖D(ξsym, z)‖pp,

where z = 2x. On the other hand, obviously Dq(ξ̄, 4N, 2)p = 4Dq(ξ,N, 2)p.
Thus we have proved the following simple property that we formulate as a
proposition.

Proposition 3.1. Let ξsym be the two-fold symmetrization of ξ as defined
by (3.64). Then

‖D(ξsym,x)‖p = 4Dq(ξ,N, 2)p.

Proposition 3.1 can be used in both directions. First, it allows us to get a
lower bound for Dq(ξ,N, 2)p. It is known that for all p > 1 and any set PN
of N points one has

‖D(PN ,x)‖p ≥ C
√

logN, (3.65)

where C is some positive absolute constant. Therefore, for any ξ

Dq(ξ,N, 2)p ≥ C
√

logN.

Second, it gives a way to build a set (in our case ξsym) with good Lp dis-
crepancy from a set (in our case ξ) with good quartered Lp discrepancy. For
instance, as we prove below, the Fibonacci sets Fn have optimal quartered Lp
discrepancy for p ∈ (1,∞) in the sense of order. Therefore, by Proposition
3.1 the set F symn , obtained from the Fibonacci set Fn by the symmetrization
procedure described above, has optimal in the sense of order standard Lp
discrepancy for all p ∈ (1,∞).
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We proceed to estimate Dq(ξ,N, d)p, p <∞, from above in the case when
ξ = Fn is the Fibonacci set, i.e. d = 2, N = bn and

ξµ = (µ/bn, {µbn−1/bn}), ξ = Fn := {ξµ}bnµ=1.

We apply the technique that is based on the Fourier representation of S(x,y)
as a function on y. First, we find the Fourier coefficients of the univariate
function

Ŝ(a, k) =

∫ 1

0

S(a, t)e−2πiktdt = (−1)k(2πik)−1(e2πika − e−2πika).

It is clear that Ŝ(a, 0) = 2a. Second, it follows directly from the definition
of S(x,y) and the above formulas that

|Ŝ(x,k)| =
d∏
j=1

|Ŝ(xj, kj)| ≤
d∏
j=1

max(|kj|, 1)−1. (3.66)

Denote

Φ(k) =
bn∑
µ=1

e2πi(k,ξµ).

Then for a trigonometric polynomial f one has

Φn(f) :=
bn∑
µ=1

f
(
µ/bn, {µbn−1/bn}

)
=
∑
k

f̂(k)Φ(k). (3.67)

It is known and easy to see that the following relation holds

Φ(k) =

{
bn, k ∈ L(n),
0, k 6∈ L(n).

(3.68)

Therefore, in the case p = 2, that we discuss first

Dq(Fn, bn, 2)2 ≤

∥∥∥∥∥∥
∑

k 6=(0,0)

Φ(k)Ŝ(x,k)

∥∥∥∥∥∥
2

. (3.69)

Using the fact that functions Ŝ(x,k) and Ŝ(x,k′) are orthogonal on [0, 1]2

if (|k1|, |k2|) 6= (|k′1|, |k′2|), the bounds (3.66), (3.69), and estimate (2.51) we
obtain

Dq(Fn, bn, 2)2
2 �

∞∑
l=0

b2
n(2lbn)−2|Zl| � log bn

∞∑
l=0

2l(l + 1)

22l
� log bn. (3.70)
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Thus,
Dq(Fn, bn, 2)2 �

√
log bn. (3.71)

We now proceed to the case p ∈ [2,∞). Let

ψl(x) :=
∑
k∈Zl

Ŝ(x,k).

Then

Dq(Fn, bn, 2)p ≤ bn

∞∑
l=0

‖ψl‖p. (3.72)

By the corollary of the Littlewood-Paley theorem we have for ‖ψl‖p

‖ψl‖p �

(∑
s

∥∥δs(ψl)∥∥2

p

)1/2

, (3.73)

where for s = (s1, s2), sj are nonnegative integers

δs(f,x) :=
∑

[2sj−1]≤|kj |<2sj ,
j=1,2

f̂(k)ei(k,x).

It is not difficult to see that for ψl only those δs(ψl) can be nonzero for which∣∣ ‖s‖1 − log2(2lγbn)
∣∣ ≤ C.

In addition by Lemma 2.9 the number of terms of δs(ψl) is not greater than
C2l. Therefore,∥∥δs(ψl)∥∥p ≤ ∥∥δs(ψl)∥∥2/p

2

∥∥δs(ψl)∥∥1−2/p

∞ � 2−l/pb−1
n (3.74)

and
‖ψl‖p � (l + log bn)1/22−l/pb−1

n . (3.75)

The bounds (3.72), (3.74) and Proposition 3.1 imply

Theorem 3.2. i) For all p ∈ (1,∞), the quartered Lp discrepancy of the
Fibonacci set Fn satisfies

Dq(Fn, bn, 2)p ≤ C(p)
√

log bn. (3.76)

ii) For all p ∈ (1,∞), the two-fold symmetrization F symn of the Fibonacci set
Fn has optimal Lp discrepancy:

‖D(F symn ,x)‖p ≤ C ′(p)
√

log 4bn. (3.77)
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