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Introduction

I chapter 7 is a continuation of chapter 3

I but we will drop Assumption 3.2, independence

I ...and specify (risk-neutral) stochastic dynamics

I since the building block securities can be expressed as

B(t,T ) = EQ
[
e−

∫ T
t r(s) ds

∣∣∣Ft

]
B̄(t,T ) = EQ

[
e−

∫ T
t r(s)+λ(s) ds

∣∣∣Ft

]
e(t,T ) = EQ

[
λ(T ) · e−

∫ T
t r(s)+λ(s) ds

∣∣∣Ft

]
we will draw inspiration from interest rate models

I N.B.: we assume ∃λ, a (risk-neutral) default intensity
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Introduction

I there are two main classes of interest rate models
I short rate
I forward rate

I short rate models can be tractable
I or at least amenable to efficient numerical techniques

I tree methods
I finite difference methods

I forward rate models have more flexible dynamics
I but are generally difficult to compute

I simulation methods
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Short rate models

short rate models start with a process description of the
short-term interest rate evolving under the risk-neutral
measure

I tractable models trade flexibility for simplicity &
intuition

I each has certain flaws
I Gaussian: potentially negative probabilities
I Affine: strictly positive rate-spread correlation

I ...but they can be considered to be locally valid

I numerical models are much more flexible

I short-rate models are inherently Markovian, so efficient
to evaluate
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Gaussian model
simplest stochastic intensity model

I the Gaussian model in §7.1 is based on the Vasicek
model for interest rates

I the key dynamical assumption is that innovations in
rates are normal

I Lemma 7.1 is the main analytical workhorse

dx(t) = (κ(t)− α · x(t)) dt + σ(t) dW (t)

=⇒ E
[
e−

∫ T
t x(s) ds

∣∣∣Ft

]
= eA(t,T )−B(t,T )·x(t)

where A and B are defined in (7.10) and (7.9)

I Proposition 7.2 uses these to derive solutions for the
building blocks where r(t) and λ(t) are combinations of
two Gaussian processes
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Multifactor gaussian model
general framework for correlation

I the factors are latent in the multifactor gaussian model

I instead we start with the risk-neutral process definitions
of the zerobond values

dB(t,T )

B(t,T )
= r(t) dt +~a(t,T )′ d ~W (t)

dB̄(t,T )

B̄(t−,T )
= (r(t) + λ(t)) dt + ~̄a(t,T )′ d ~W (t)− dN(t)

where the vector form of the volatility allows for a
completely general description of the correlation of
innovations between the curves and amongst points on
the curves over time
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Multifactor gaussian model
general framework for correlation

I in this setting, where B and B̄ are taken as given, the
remaining building block security is

e(t,T ) = B̄(t,T )·[
h(t,T )−

∫ T

t

~̄a(s,T )′
∂

∂T

(
~̄a(s,T )−~a(s,T )

)
ds

]
where h = f̄ − f is the forward hazard rate

I the last term reflects the correlation between r and λ

I N.B.: I believe there are typos in (7.23) and (7.24)
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Cox-Ingersoll-Ross model

I the affine model in §7.2-3 is based on the
Cox-Ingersoll-Ross model for interest rates

I the key dynamical assumption is that innovations in
rates are ANC: affine combinations of non-central
chi-squared random variables

I say there are n independent factors xi , where

dxi (t) = (αi − βi · xi (t)) dt + σi ·
√

xi (t) dWi (t)

with positive parameters and αi > σ2
i /2 to insure that

xi (t) > 0 a.s.
I analogously to the gaussian model, the main analytical

workhorse for this model is

E
[
e−

∫ T
t

∑
i ci ·xi (s) ds

∣∣∣Ft

]
=

e
∑

i log H1i (T−t,ci )−H2i (T−t,ci )·ci ·xi (t)

where H1 and H2 are defined in (7.29) and (7.30)
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Cox-Ingersoll-Ross model

I define the short rate and default intensity by

r(t) =
n∑

i=1

wi · xi (t)

λ(t) =
n∑

i=1

w̄i · xi (t)

with wi and w̄i non-negative

I this guarantees that rates are non-negative

I ...but also limits the model to positive correlations

I there are a total of 5n + 2 parameters to fit to calibrate
the model
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Cox-Ingersoll-Ross model

with the workhorse and the result of Proposition 7.8, we can
write down the values of the building block securities

B(t,T ) = e
∑n

i=1 log H1i (T−t,wi )−H2i (T−t,wi )·wi ·xi (t)

B̄(t,T ) = e
∑n

i=1 log H1i (T−t,wi+w̄i )−H2i (T−t,wi+w̄i )·(wi+w̄i )·xi (t)

and

e(t,T ) = B̄(t,T )·
N∑

i=1

w̄i · (wi + w̄i ) ·
(

αi + xi (t) ·
∂

∂T

)
H2i (T − t,wi + w̄i )
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Tree model

I the tree model in §7.4 is based on the Hull-White
trinomial model for interest rates

I which in turn is based on the gaussian model

I there are a total of ten successors to each node
I although most of these are successors are shared—

the tree is re-combining

I in order to prevent rates from going negative, the
excursion is artificially limited by having the tree fold
back on itself

I the risk-neutral branching probabilities are calibrated
according to

I (7.78-86) to fit the moments of the dynamics
I tables 7.1-3 to incorporate the correlation

I note that tree models are essentially explicit schemes
that implement the PDE in the next section
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Tree model
Hull-White gaussian model

in the Hull-White short rate model, the mean reversion level
is allowed to vary deterministically in order to facilitate
calibration

dr(t) = [k(t)− a · r(t)] dt + σ dW (t)

the solution to this is

r(t) = r∗(t) + α(t)

where the auxiliary process, r∗, is defined by r∗(0) = 0 and

dr∗ = −a · r∗ dt + σ dW

and the deterministic offset

α(t) = r(0) · e−a·t +

∫ t

0
e−a·(t−s) · k(s) ds
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Tree model
Hull-White trinomial tree model

I the model has six parameters: a, σ, ā, σ̄, ρ, and π

I once these are specified,
I trees in r∗ and λ∗ can be constructed; and
I α ({0 : T}) and ᾱ ({0 : T}) can be fit to

B (0, {0 : T}) and B̄ (0, {0 : T}) by forward induction,
starting with the risk-free curve

I the risk-neutral default branching probability is
p = 1− e−λ·∆t from each non-default node

I the recovery in the default node is π
I should it be needed, the local expectation of the default

time is τ e = t + 1
λ ·

(
1− λ·∆t

eλ·∆t−1

)
I once calibrated, the tree can be used to price

defaultable securities by backwards induction

I early exercise can be modeled by evaluating the early
exercise option at each step
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Partial differential equation

I to derive the partial differential equation for a
defaultable security in the intensity setting, start by
specifying the stochastic processes for the rates

dr = µr dt + σr dW1

dλ = µλ dt + σλ ·
(
ρ dW1 +

√
1− ρ2 dW2

)
I also, let the compensator measure for the marked point

process be

ν(dt, dπ) = λ(t)dt K (dπ)

I and let the cashflow densities be

f̃ (t, r , λ) prior to default

g(t, r , λ, π) at default
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Partial differential equation

I define the value of the security to be

V (t) = v (t, r(t), λ(t)) for t < τ

I applying Itô’s Lemma and the fundamental pricing rule,
we get that v must satisfy

∂tv + Lv − (r + λ) · v = −g e · λ− f̃

where the diffusion’s linear operator is

L = µr ·∂r +
1
2 ·σ

2
r ·∂rr +µλ ·∂λ+ 1

2 ·σ
2
λ ·∂λλ+ρ·σr ·σλ ·∂λr

and the locally (risk-neutral) expected default payoff is

g e(t, r , λ) =

∫ 1

0
g(t, r , λ, π)K (dπ)
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Partial differential equation

In these terms, a valuation formula v for any defaultable
claim can be found given:

1. a final condition defined in terms of the no-default
payoff (may not be so simple)

v(T , r , λ) = F (r , λ)

2. boundary conditions on v at the extremes of r and λ

I the problem is comparable to that for a default-free
interest-sensitive claim

I in particular, adding a stochastic intensity and recovery
effectively transforms:

discount rate r → r + λ

dividend rate f̃ → f̃ + g e
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Forward rates framework

I the whole curve model in §7.6 is based on
Heath-Jarrow-Morton

I all short rate models are consistent with HJM
I HJM with deterministic volatility is equivalent to the

gaussian model

I since the dynamics are essentially unlimited, need to
specify the no-arbitrage drift restriction

I model is non-Markovian, so valuation is in a simulation
setting

I an implementation would proceed in the following steps

1. specify initial risk-free term structure f (0, {0 : T})
2. ...zero-recovery spread term structure h (0, {0 : T})
3. ...forward rate volatilities and correlations
4. calculate drifts
5. simulate paths in β, B, B̄, e, I , and π
6. evaluate pathwise security values
7. average
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Heath-Jarrow-Morton

we start by taking as given,

1. the rates and spreads for T ≥ 0

f (0,T ) and h (0,T )

2. and the i = 1, . . . , n co-volatilities for t ≥ 0 and T ≥ t

σi (t,T ) and σh
i (t,T ) ∀t < τ

I and define the risk-neutral processes for 0 ≤ t ≤ T ,

df (t,T ) = α(t,T ) dt +
n∑

i=1

σi (t,T ) dWi

dh(t,T ) = αh(t,T ) dt +
n∑

i=1

σh
i (t,T ) dWi ∀t < τ
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Heath-Jarrow-Morton

no-arbitrage imposes the drift restrictions

α(t,T ) =
n∑

i=1

σi (t,T ) ·
∫ T

t
σi (t,T

′) dT ′

and

αh(t,T ) =
n∑

i=1

[
σh

i (t,T ) ·
∫ T

t
σi (t,T

′) dT ′

+
(
σi (t,T ) + σh

i (t,T )
)
·
∫ T

t
σh

i (t,T ′) dT ′
]

also, Proposition 7.11 verifies that

h(t, t) = λ(t)

which can be used to model the default indicator process
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Monte Carlo

to value a defaultable security under an intensity model, we
need to evaluate the pathwise integral in (7.143),

EQ [β(0,T ) · I (T ) · F (T )| F0]

+ EQ [β(0, τ) · N(T ) · g(τ, π)| F0]

EQ

[∫ T

0
β(0, t) · I (t) · f̃ (t) dt

∣∣∣∣F0

]
where

I F is the final payoff at T if T < τ
I may depend on f (T , t) and h(T , t) for T ≤ t < T̄

I g(t, π) is the payoff at default for recovery π if t = τ

I f̃ (t) is the dividend rate for t < τ ∧ T

and β, τ , N, I , and π all depend on the path ω
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Monte Carlo
scheme for rates

the HJM framework is well-suited for an Euler scheme to
simulate pathwise forward rates

I time from t = 0 to T̄ ≥ T is discretized

I forward rates are updated according to

f (tm, tl) = f (tm−1, tl) + α (tm, tl) · (tm − tm−1)

+
n∑

i=1

σi (tm, tl) · εi ,m ·
√

tm − tm−1

h (tm, tl) = h (tm−1, tl) + αh (tm, tl) · (tm − tm−1)

+
n∑

i=1

σh
i (tm, tl) · εi ,m ·

√
tm − tm−1

for l ≥ m and εi ,m standard i.i.d. variates
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Monte Carlo
schemes for default

by way of illustration, the book describes three schemes of
increasing efficiency for simulating default

I fixed time grid
I draw a uniform variate at each step in each path
I default immediately if
− log Um < h (tm, tm) · (tm − tm−1)

I direct simulation of default time
I draw a single uniform variate for each path
I set τ to be the lowest tM with
− log U <

∑M
m=1 h (tm, tm) · (tm − tm−1)

I simulation with branching to default
I do not simulate default at all;

apply iterated expectations instead

the author claims the latter method converges much quicker
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Monte Carlo
simulation with branching to default

analogously to Figure 3.2, calculate the (risk-neutral)
expected defaultable value at each step in the tree

for each path,

I simulate all rates f and h out to T̄

I set β = γ = 1 and v = 0 at t = 0
I value the security along the path from t = 0 to T

1. update the discount factor: β ← β · e−f (t,t)·∆t

2. calculate the default probability: p = 1− e−h(t,t)·∆t

3. update the survival probability: γ ← γ · (1− p)
4. accumulate the value:

v ← v + β · γ ·
(
f̃ (t) ·∆t · (1− p) + g e(t) · p

)
I where g e(t) = EQ [g(t, π) | Ft ]
I N.B.: include the payoff F (T ) in the last step

...then average the values, v , over the paths
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Conclusion

I questions?

I remaining chapters
ch. 5 Cox process Chris Bemis

ch. 6 recovery models

ch. 8 transition models John Baxter

ch. 9 structural model Bill Barr

ch. 10 correlation models Carlos Tolmasky
I papers

I Duffie-Lando (2001), Term structures of credit spreads
with incomplete accounting information

I Andersen-Sidenius-Basu (2003), All your hedges in one
basket

I Carr-Flesaker (2006), Robust replication of default
contingent claims

I Errais-Giesecke-Goldberg (2007), Pricing credit from the
top down with affine point processes
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Calendar

seven Wednesdays left before Fall term starts
on September 4 (Labour Day is September 3)

I July 18

I July 25

I August 1

I August 8

I August 15

I August 22

I August 29 (State Fair!)
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