John Dodson

Problem statement Static volatility Dynamic volatility Extensions

A bound on the standard error of the price of risk

John Dodson¹

The Options Clearing Corporation

University of Minnesota Center for Financial and Actuarial Mathematics

October 18, 2013

¹The views expressed here are the author's alone.

Problem statement

Put yourself in the shoes of a statistical analyst considering the marginal potential of an investment asset.

- Assume that its total return process is continuous.
- Further assume that there is a risk-neutral measure.

You are interested in how much this asset can be expected to outperform a risk-free asset. Therefore, you are interested in fitting a Radon-Nikodým derivative,

$$\left. \frac{d\mathbb{P}}{d\mathbb{Q}} \right| \mathcal{F}_0 \triangleq e^{Z_t - \frac{1}{2} \langle Z \rangle_t} \quad \forall t > 0 \tag{(\dagger)}$$

where

$$Z_t \triangleq \int_0^t \lambda_s \, dW_s$$

with \mathcal{F}_t -measurable values λ_t the "price of risk" and W_t the \mathbb{Q} -Wiener process driving the asset and t = 0 is the present.

Estimating lambda

John Dodson

Problem statement

In these terms, this might seem like a difficult econometric challenge; but professional investment analysts find ostensibly satisfactory solutions every day in the course of forming their recommendations.

Main result

I consider the class of unbiased estimators for a constant value of the price of risk using data sampled from the total return of the asset and the risk-free investment and prove there is a lower bound on the standard error.

bias
$$\hat{\lambda} = 0 \implies SE \hat{\lambda} \ge \frac{1}{\sqrt{T}}$$
 (*)

where \mathcal{T} is the duration of the historical period used in the estimate.

Estimating lambda

John Dodson

Experiment design

Andrew Lo, in his study on the statistics of Sharpe ratios, says that values of the order $\lambda\approx 1.0~{\rm yr}^{-1/2}$ are typical. Analysts seem to find it useful to discriminate between $\lambda=+0.5~{\rm yr}^{-1/2}$ and zero. This requires a standard error of about half this difference. But

bias
$$\hat{\lambda} = 0$$
 & SE $\hat{\lambda} \le 0.25 \text{ yr}^{-1/2} \implies T > 16 \text{ yr}$

I am doubtful that investment analysts typically include data from sixteen years ago (expect possibly for indexes) to make their forecasts.

I take this to mean that the use of biased estimators must be very common! ©

Estimating lambda

John Dodson

Static volatility

The result is (I hope) relatively well-known in the setting of static volatility. My present contribution is to extend the result to a class of parametric models for dynamic volatility. But let us review the static volatility case first.

Geometric Brownian motion

Consider a sample of N + 1 joint observations over T years of risky S_t and risk-free B_t with stochastic processes

$$dS_t = (r_t + \lambda \sigma) S_t dt + \sigma S_t d\tilde{W}_t$$
$$dB_t = r_t B_t dt$$

where $\tilde{W}_t \triangleq W_t - \lambda t$ is a \mathbb{P} -martingale. Quantities

$$\log \frac{S_{t_i}}{B_{t_i}} - \log \frac{S_{t_{i-1}}}{B_{t_{i-1}}}$$

are independent Gaussian random variables.

Estimating lambda

John Dodson

Static volatility

It is straight-forward to form the joint likelihood function for the parameters σ^2 and λ , and it is merely tedious to evaluate the inverse Fisher information,

$$\mathcal{I}^{-1}\left(\sigma^{2},\lambda\right) = \begin{pmatrix} \frac{2\sigma^{4}}{N} & \frac{\sigma-\lambda}{2\sigma^{2}}\frac{2\sigma^{4}}{N}\\ \frac{\sigma-\lambda}{2\sigma^{2}}\frac{2\sigma^{4}}{N} & \frac{1}{T} + \left(\frac{\sigma-\lambda}{2\sigma^{2}}\right)^{2}\frac{2\sigma^{4}}{N} \end{pmatrix}$$

hence, by Cramér-Rao, we have

$$\operatorname{var} \hat{\lambda} \geq rac{1}{T} + \left(rac{\sigma-\lambda}{2\sigma^2}
ight)^2 rac{2\sigma^4}{N} \geq rac{1}{T}$$

for any unbiased estimator $\hat{\lambda}$ of λ .

Of course volatility is not static. Robert Merton wrote about this result in 1980 and took it as a sign to turn towards dynamic volatility models. Estimating lambda

John Dodson

Dynamic volatility

To introduce dynamic volatility, start by defining our data generating process as $X_t \triangleq \log \frac{S_t}{B_t}$. In general, we have

$$X_t = X_{t_0} + \int_{t_0}^t \sigma_s \, dW_s - \int_{t_0}^t \frac{1}{2} \sigma_s^2 \, ds \quad \forall t \ge t_0$$

Discretize time according to $t_0 < t_1 < \cdots < t_N \leq 0$ and let

$$\int_{t_0}^{t_n} \sigma_s \, dW_s = \sum_{i=1}^n \sqrt{\frac{h_i}{t_i - t_{i-1}}} \left(W_{t_i} - W_{t_{i-1}} \right)$$

where each h_i is $\mathcal{F}_{t_{i-1}}$ -measurable. Therefore

$$X_{t_i}|\mathcal{F}_{t_{i-1}} \sim \mathcal{N}\left(X_{t_{i-1}} + m_i, h_i\right)$$

under \mathbb{P} where $m_i = \lambda \sqrt{h_i (t_i - t_{i-1})} - \frac{1}{2} h_i \approx 0$.

Estimating lambda

John Dodson

Dynamic volatility

Consider some finite-dimensional specification for these conditional variances, for example Engle's GARCH

$$h_i = \omega + \alpha \epsilon_{i-1}^2 + \beta h_{i-1}$$

where $\epsilon_i \triangleq X_i - \mathsf{E}^{\mathbb{P}} X_i | \mathcal{F}_{t_{i-1}}$

• Denote these parameters collectively by the vector θ .

Likelihood function

We can define the likelihood function for a timeseries sample $x = (x_{t_0}, x_{t_1}, \dots, x_{t_N})^\top$ as

$$f_X^{\mathbb{P}}(x;\theta + \lambda) = f_{X_{t_1}|\mathcal{F}_{t_0}}^{\mathbb{P}}(x_{t_1}) \cdots f_{X_{t_N}|\mathcal{F}_{t_{N-1}}}^{\mathbb{P}}(x_{t_N})$$

where the price of risk is now appended to the parameter vector.

Estimating lambda

John Dodson

Dynamic volatility

The key observation is that we can apply (\dagger) to separate the price of risk from the volatility parameters.

$$\log f_X^{\mathbb{P}}(X;\theta + \lambda) = \log f_X^{\mathbb{Q}}(X;\theta) \\ + \lambda \left(W_{t_N} - W_{t_0}\right) - \frac{1}{2}\lambda^2 \left(t_N - t_0\right)$$

Fisher information

The Fisher information, $\mathcal{I} \triangleq \operatorname{cov}^{\mathbb{P}} \nabla \log f_X^{\mathbb{P}}$, can be written as

$$\mathcal{I}(\theta + \lambda) = \begin{pmatrix} \mathcal{I}(\theta) - \lambda \mathsf{E}^{\mathbb{P}} \frac{\partial^2 W}{\partial \theta^{\top} \partial \theta} & -\mathsf{E}^{\mathbb{P}} \frac{\partial W}{\partial \theta^{\top}} \\ -\mathsf{E}^{\mathbb{P}} \frac{\partial W}{\partial \theta} & T \end{pmatrix}$$

where $T \triangleq t_N - t_0$ is the duration of the historical sample period and $W \triangleq W_{t_N} - W_{t_0}$ is the cumulative increment of the latent driving process for the risky asset. Estimating lambda

John Dodson

Schur complement

To conclude, we need a simple result from linear algebra. It is a straight-forward exercise to prove that if matrix M > 0 (i.e. positive-definite) has the form

$$M = \begin{pmatrix} A & a \\ a^{\top} & \alpha \end{pmatrix} \qquad \& \qquad M^{-1} = \begin{pmatrix} B & b \\ b^{\top} & \beta \end{pmatrix}$$

for scalars α and β , then $\beta \ge 1/\alpha$. (N.B.: β^{-1} is the Schur complement of A in M.). Hence,

$$\left[\mathcal{I}^{-1}(\theta \# \lambda)
ight]_{\lambda,\lambda} \geq rac{1}{T}$$

which leads to the main result (*).

Estimating lambda

John Dodson

Extensions

The Cramér-Rao lower bound is a special case of the Kullback inequality about the relative entropy of one measure with respect to another

 $D_{ ext{KL}}\left(\mathbb{P}\parallel\mathbb{Q}
ight)\geq\Psi_{\mathbb{Q}}^{\star}\left(\mu_{1}^{\prime}\left(\mathbb{P}
ight)
ight)$

which may be useful in extending the result of this paper to a wider class of processes, such as those with non-zero Lévy measure.

The challenge this seems to present is that there may no longer be a plausible low-dimensional parameterization of the Radon-Nikodým derivative(s) that describe risk-neutrality in this setting. John Dodson