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Problem statement

Put yourself in the shoes of a statistical analyst considering
the marginal potential of an investment asset.

I Assume that its total return process is continuous.

I Further assume that there is a risk-neutral measure.

You are interested in how much this asset can be expected
to outperform a risk-free asset. Therefore, you are interested
in fitting a Radon-Nikodým derivative,

dP
dQ

∣∣∣∣F0 , eZt−1
2 〈Z〉t ∀t > 0 (†)

where

Zt ,
∫ t

0
λs dWs

with Ft-measurable values λt the “price of risk” and Wt the
Q-Wiener process driving the asset and t = 0 is the present.
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Problem statement

In these terms, this might seem like a difficult econometric
challenge; but professional investment analysts find
ostensibly satisfactory solutions every day in the course of
forming their recommendations.

Main result
I consider the class of unbiased estimators for a constant
value of the price of risk using data sampled from the total
return of the asset and the risk-free investment and prove
there is a lower bound on the standard error.

bias λ̂ = 0 =⇒ SE λ̂ ≥ 1√
T

(∗)

where T is the duration of the historical period used in the
estimate.
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Experiment design

Andrew Lo, in his study on the statistics of Sharpe ratios,
says that values of the order λ ≈ 1.0 yr−1/2 are typical.
Analysts seem to find it useful to discriminate between
λ = +0.5 yr−1/2 and zero. This requires a standard error of
about half this difference. But

bias λ̂ = 0 & SE λ̂ ≤ 0.25 yr−1/2 =⇒ T > 16 yr

I am doubtful that investment analysts typically include data
from sixteen years ago (expect possibly for indexes) to make
their forecasts.

I take this to mean that the use of biased estimators must
be very common! ,
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Static volatility

The result is (I hope) relatively well-known in the setting of
static volatility. My present contribution is to extend the
result to a class of parametric models for dynamic volatility.
But let us review the static volatility case first.

Geometric Brownian motion
Consider a sample of N + 1 joint observations over T years
of risky St and risk-free Bt with stochastic processes

dSt = (rt + λσ) St dt + σSt dW̃t

dBt = rtBt dt

where W̃t , Wt − λt is a P-martingale. Quantities

log
Sti
Bti

− log
Sti−1

Bti−1

are independent Gaussian random variables.
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Static volatility

It is straight-forward to form the joint likelihood function for
the parameters σ2 and λ, and it is merely tedious to
evaluate the inverse Fisher information,

I−1
(
σ2, λ

)
=

(
2σ4

N
σ−λ
2σ2

2σ4

N
σ−λ
2σ2

2σ4

N
1
T +

(
σ−λ
2σ2

)2 2σ4

N

)

hence, by Cramér-Rao, we have

var λ̂ ≥ 1

T
+

(
σ − λ
2σ2

)2 2σ4

N
≥ 1

T

for any unbiased estimator λ̂ of λ.

Of course volatility is not static. Robert Merton wrote about
this result in 1980 and took it as a sign to turn towards
dynamic volatility models.
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Dynamic volatility

To introduce dynamic volatility, start by defining our data
generating process as Xt , log St

Bt
. In general, we have

Xt = Xt0 +

∫ t

t0

σs dWs −
∫ t

t0

1
2σ

2
s ds ∀t ≥ t0

Discretize time according to t0 < t1 < · · · < tN ≤ 0 and let∫ tn

t0

σs dWs =
n∑

i=1

√
hi

ti − ti−1

(
Wti −Wti−1

)
where each hi is Fti−1-measurable. Therefore

Xti |Fti−1 ∼ N
(
Xti−1 + mi , hi

)
under P where mi = λ

√
hi (ti − ti−1)− 1

2hi ≈ 0.
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Dynamic volatility

Consider some finite-dimensional specification for these
conditional variances, for example Engle’s GARCH

hi = ω + αε2i−1 + βhi−1

where εi , Xi − EP Xi |Fti−1

I Denote these parameters collectively by the vector θ.

Likelihood function
We can define the likelihood function for a timeseries sample
x = (xt0 , xt1 , . . . , xtN )> as

f PX (x ; θ++λ) = f PXt1 |Ft0
(xt1) · · · f PXtN

|FtN−1
(xtN )

where the price of risk is now appended to the parameter
vector.
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Dynamic volatility

The key observation is that we can apply (†) to separate the
price of risk from the volatility parameters.

log f PX (X ; θ++λ) = log f QX (X ; θ)

+ λ (WtN −Wt0)− 1
2λ

2 (tN − t0)

Fisher information
The Fisher information, I , covP∇ log f PX , can be written as

I(θ++λ) =

(
I(θ)− λEP ∂2W

∂θ>∂θ
−EP ∂W

∂θ>

−EP ∂W
∂θ T

)

where T , tN − t0 is the duration of the historical sample
period and W , WtN −Wt0 is the cumulative increment of
the latent driving process for the risky asset.
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Schur complement

To conclude, we need a simple result from linear algebra. It
is a straight-forward exercise to prove that if matrix M > 0
(i.e. positive-definite) has the form

M =

(
A a
a> α

)
& M−1 =

(
B b
b> β

)
for scalars α and β, then β ≥ 1/α. (N.B.: β−1 is the Schur
complement of A in M.). Hence,

[
I−1(θ++λ)

]
λ,λ
≥ 1

T

which leads to the main result (∗).
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The Cramér-Rao lower bound is a special case of the
Kullback inequality about the relative entropy of one
measure with respect to another

DKL (P ‖ Q) ≥ Ψ?
Q
(
µ′1 (P)

)
which may be useful in extending the result of this paper to
a wider class of processes, such as those with non-zero Lévy
measure.

The challenge this seems to present is that there may no
longer be a plausible low-dimensional parameterization of the
Radon-Nikodým derivative(s) that describe risk-neutrality in
this setting.
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