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Abstract

The structural model for a firm with a single aggregate source of un-
certainty is especially tractable in a perpetual setting. I show closed-form
results for the densities of the horizon value of the firm’s aggregate equity
and debt, and arbitrage-free values of various securities and derivatives,
including European-style equity options and credit default swaps.
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1 Introduction

The structural model of the firm was introduced by Black & Scholes (1973).
In the example they laid out, the firm’s liabilities consisted of a single discount
bond. Upon maturity, the firm would be either wound-up or recapitalized.
There were no cashflows at all.

This was ideal for the application of the new formulae for European-style
options that were introduced in that paper; and in spite of the fact that the
fixed-term setting directly contradicts the fundamental principle of the firm as
a going concern, the precedent has held. To this day, the structural model is
presented in introductory graduate finance texts in terms of a pure discount
liability structure. See, for example, the treatment in McDonald (2006).

∗Investment Risk Management Research & Development, RiverSource Investments, LLC,
a wholly-owned subsidiary of Ameriprise Financial, Inc. The views expressed in this ar-
ticle are solely those of the author and do not necessarily represent those of RiverSource
Investments. The author is grateful to William Barr for many valuable discussions.
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An alternate perspective appeared shortly thereafter, when Merton’s (1974)
paper on corporate debt was published. In the last section, the author re-
opened the discussion of coupons, and even perpetual debt; but the absence of
a dividend policy and an awkward solution involving the confluent hypergeo-
metric function seems to have hindered its subsequent development.1

The application of the classical Black-Scholes-Merton analysis to debt reached
its apex shortly thereafter in Black & Cox (1976). This paper introduced mod-
els incorporating discrete and continuous coupons and American-style defaults
specified exogenously or derived endogenously. They presented the tractability
of continuous perpetual debt, which has served as the starting point for much
subsequent work, including this paper.

The subject would have to wait almost twenty years for significant analytical
advancement. The Longstaff & Schwartz (1995) extension introduced stochas-
tic interest rates. Here, default is strictly exogenous. Furthermore, reliance
upon the affine class precluded its widespread application in industry. This
model was generalized in Collin-Dufresne & Goldstein (2001) to accommodate
several empirical findings.

In the same period, Leland (1994) repeated Merton’s analysis of perpetual
debt while avoiding payouts altogether. This was extended in Leland & Toft
(1996) to handle discrete principal payments. Their motivation was the deter-
mination of optimal capital structure; and while they obtained results similar
to mine, they did not (and could not) apply the framework to the valuation of
securities.

I submit that a thoughtful treatment of liability and equity cashflows results
in a version of the structural model with endogenous default that is not only
economically plausible; but is analytically simpler and more powerful then its
predecessors.

2 Balance Sheet Model

Let us model the micro-economics of a firm with publicly-traded debt and
equity as a continuous and perpetual stream of payments to investors funded
by the economic value added of the firm.

Let us assume a single class of debt and model the debtholders’ interest in
the underlying assets of the firm, St, in terms of a perpetual American-style put
struck at some level, K, representing the indebtedness of the firm2 producing
a perpetual defaultable interest stream to debtholders at fixed rate r ·K where
r is risk-free interest. Let us also assume that the assets of the firm produce
a perpetual cashflow stream at variable rate δ · St which is used to service the
debt and pay dividends to owners. I do not explicitly model wages, taxes, or
any other costs of production. We will assume that the value of the underlying

1This solution has nonetheless persisted. See, for example, the binomial-tree version of
the structural model in Ho & Lee (2004).

2Note that K is not the face value of the debt, nor is it the default threshold.
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economic assets of the firm, St, follows a geometric brownian motion with ex
div drift µ− δ and volatility σ.

2.1 Equity and Debt

Let us start with the Merton (1973) solution for the perpetual put value in this
setting,

pt = (K − St ∧ L) ·
(

L

St ∨ L

)γ

(2.1)

with

γ =
r − δ

σ2
− 1

2
+

√(
r − δ

σ2
− 1

2

)2

+
2 · r
σ2

(2.2)

L =
K

1 + 1
γ

(2.3)

which is verified in Appendix B. Note that γ is a positive3 dimensionless quan-
tity and L < K.

The put value rises as St falls. For St ≤ L the value becomes the intrinsic—
indicating that it is optimal for the owners to exercise—the first time St falls
through L. This represents liquidation.

Prior to liquidation the aggregate debt is worth

Dt = K − pt (2.4)

Modeling this as a perpetual annuity whose value is K · r/(r + st), we can see
that the implied perpetual spread is

st = r · pt

Dt
(2.5)

This increases to a maximum value of r/γ as St falls to L. I will discuss the
yield spread distribution in Section 5.2 and the term structure in Section 6.1.

At liquidation the debtholders’ claim is worth L, representing the aggregate
recovery value.

Prior to liquidation the aggregate owners’ equity is worth

Et = St −K + pt (2.6)

2.2 Black-Scholes

Considering equity and debt as derivatives on the underlying assets, let us
review the greeks.

3limσ→∞ γ = 0

3



The deltas of the equity and debt with respect to the underlying asset value
are

0 <
∂Et

∂St
= 1− γ · pt

St
< 1 (2.7)

0 <
∂Dt

∂St
= γ · pt

St
< 1 (2.8)

the gammas are

∂2Et

∂S2
t

= γ · (γ + 1) · pt

S2
t

> 0 (2.9)

∂2Dt

∂S2
t

= −γ · (γ + 1) · pt

S2
t

< 0 (2.10)

and the thetas are zero by design.
I verify in Appendix B that these formulations satisfy the Black-Scholes

equation for no-arbitrage with cashflow rates δ · St − r ·K for the equity and
r ·K for the debt.

3 Default Model

The enterprise value follows geometric brownian motion; in particular,

ST (ω) = S0 · e
(

µ−δ− 1
2 ·σ

2
)
·T+σ·BT (ω) (3.1)

where Bt(ω) is a realization of a standard brownian motion with respect to the
standard probability triple and ω ∈ Ω which we will henceforth suppress.

3.1 Liquidation

The probability that the firm is liquidated before time T is

qT = Pr0

{
min

0<t<T
St < L

}
= Pr0

{
min

0<t<T

[
Bt +

µ− δ − 1
2 · σ

2

σ
· t
]

< − log S0/L

σ

}
Using results from Appendix D about the distribution of the maximum

excursion of a brownian motion, we can demonstrate that

qT =
(

S0

L

)1−2·µ−δ

σ2

· Φ

(
− log S0/L +

(
µ− δ − 1

2 · σ
2
)
· T

σ ·
√

T

)

+ Φ

(
− log S0/L−

(
µ− δ − 1

2 · σ
2
)
· T

σ ·
√

T

)
(3.2)
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where Φ(·) is the standard normal CDF4.
In the limit T →∞,

q∞ =

{(
S0
L

)1−2·µ−δ

σ2 µ > δ + 1
2 · σ

2

1 otherwise

This means that if the asset growth rate is too low, the firm is guaranteed
to eventually go into liquidation; while if the asset growth rate is high enough,
there is a chance (but not a guarantee) that the firm will avoid liquidation
indefinitely.

We also know from the appendix that q0 = 0, and generally

lim
T→0

qT

Tn
= 0 n = 1, 2, . . .

for S0 > L, which in particular means that there can be no hazard rate associ-
ated with liquidation (or any other passage event) in this model. Technically,
default is said to be an accessible event.

3.2 Financial Distress

From Appendix B, it would seem that the equity dividends are negative for L <
St < r

δ ·K. If the owners have limited liability, then this is prevented. Instead,
interest payments due to debtholders are missed and the firm is compelled to
enter bankruptcy protection. In this model, it is not until the value of the
firm’s assets falls to L that the debtholders can expect to take control of the
assets.

Let us denote the bankruptcy boundary L′.

L′ =
r

δ
·K =

L

1− γ · σ2

2·r

Since L′ > L, the firm will always experience financial distress prior to
liquidation. It is possible that the firm may recover if St subsequently wanders
above L′ before it hits the absorbing L. Let us assume that any unpaid interest
accrued during a successful re-organization is ultimately paid to the creditors.

One might imagine a “fuzzy boundary” defining default somewhere in the
asset value range between L′ and L, since the bankruptcy process entails extra
costs and additional uncertainty. I will no go into this further here.

4 Increments

4.1 Finite Increments

As a function of the brownian motion, the owners’ equity value at time T is

ET = L · fγ

(
f−1

γ

(
E0

L

)
· e

(
µ−δ− 1

2 ·σ
2
)
·T+σ·BT

)
(4.1)

4Φ(0) = 1
2

and Φ′(z) = e−z2/2/
√

2π.
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where

fγ(x) = x− 1− 1− x−γ

γ
(4.2)

provided

min
0<t<T

[
Bt +

µ− δ − 1
2 · σ

2

σ
· t
]
≥ −

log f−1
γ (E0/L)

σ

The horizon value of the debt is similar, with x− fγ(x) in place of fγ(x).
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Figure 1: Normalized debt and equity for limiting values of γ.

4.2 Instantaneous Increments

Define the (simple) total return on the equity over the period t ∈ (0, T ] to be

RE
T =

ET + δ ·
∫ T

0
St dt− r ·K · T − E0

E0 · T
(4.3)

Applying Itô’s Lemma to RE
T · T , we can see that

E0

{
lim
T→0

RE
T

}
= r + (µ− r) · Ω0 (4.4)

and √
var0

{
lim
T→0

RE
T ·

√
T
}

= σ · Ω0 (4.5)

where Ωt is the equity elasticity due to financial leverage,

Ωt =
St

Et
· ∂Et

∂St
=

St − L

Et
· (1 + γ)− γ (4.6)
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These are consistent with the results from Appendix C.
Notice that the equity volatility is simply the asset volatility scaled by the

elasticity, and the instantaneous risk-adjusted excess total return for the equity
is that of the underlying assets, namely (µ− r)/σ.

The total return on the debt is

RD
T =

DT + r ·K · T −D0

D0 · T
(4.7)

which has drift rate

E0

{
lim
T→0

RD
T

}
= r + (µ− r) ·

(
1− (Ω0 − 1) · E0

D0

)
(4.8)

and volatility √
var0

{
lim
T→0

RD
T ·

√
T
}

= σ ·
(

1− (Ω0 − 1) · E0

D0

)
(4.9)

The debt has the same instantaneous risk-adjusted excess total return as
the assets, but generally much lower volatility5.

Instantaneous debt and equity total returns are perfectly correlated, since
there is only one source of uncertainty. In fact, equity and debt are substitutes
for one other (and the underlying assets) from a mean-variance perspective in
the instantaneous total return setting. Differences emerge in the finite setting
because of the possibility of default. And even in the instantaneous setting,
we see from Appendix C that the higher moments of debt, equity, and assets
differ, with equity innovations more positively skewed than assets and debt
innovations negatively skewed.

5 Densities

5.1 Equity Density

We can use the results from Appendix D to write down the density function of
the horizon value of equity. In the notation of the appendix,

ET = L · fγ

(
eσ·(B̃′

T−M)
)

(5.1)

and

θ =
µ− δ − 1

2 · σ
2

σ
(5.2)

M = −
log f−1

γ

(
E0
L

)
σ

(5.3)

5For γ greater than one-half, the debt volatility does not exceed about one-sixth of the
equity volatility (for constant risk-free interest rates).
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where f−1
γ : [0,∞) 7→ [1,∞) is well-defined for γ > 0 but unfortunately does

not seem to have a more primitive expression.
Since

x · f ′γ(x) = (x− 1) · (1 + γ)− fγ(x) · γ (5.4)

we can apply a change of variable to the result (D.15) to get

Pr0 {ET ∈ dy} =
(
1− e−2·log f−1

γ (y/L)·log f−1
γ (E0/L)/(σ2·T)

)
· e−

1
2 ·(log f−1

γ (y/L)−log f−1
γ (E0/L)−(µ−δ−σ2/2)·T)2

/(σ2·T)(
L ·
(
f−1

γ (y/L)− 1
)
· (1 + γ)− y · γ

)
·
√

2π · σ2 · T
dy (5.5)

for y > 0. We can see that the equity is approximately log-normal with volatil-
ity σ · Ω0.

Keep in mind that the equity density has a pole at zero, not represented
here, corresponding to liquidation whose magnitude is given by qT from equa-
tion (3.2).

0 50 100 150 200

Figure 2: Equity density at T = 1 for E0 = 100 with r = 0.05, µ = 0.06,
δ = 0.03, σ = 0.2, and L = 20. Dashed line is the corresponding log-normal
approximation.

5.2 Spread Density

Similarly, we can use the definition of the perpetual spread,

st =
r

(1 + γ) ·
(

St

L

)γ − 1
(5.6)
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to change variables in (D.15) to get its horizon density,

Pr0 {sT ∈ dy} =
(
1− e−2·log 1+r/s0

1+γ ·log 1+r/y
1+γ /(γ2·σ2·T)

)
· e

− 1
2 ·

(
log

1+r/y
1+r/s0

+(r−γ·(µ−r)−γ2·σ2/2)·T
)2

/(γ2·σ2·T)

y2/r · (1 + r/y) ·
√

2π · γ2 · σ2 · T
dy (5.7)

on the compact domain (0, r
γ ). Note that the spread becomes undefined upon

liquidation, so this is an improper density whose total mass is 1−qT . Notice that
for st small, the quantity 1 + r/st is approximately log-normal with volatility
γ · σ.

0 10 20 30 40 50 60
bp

Figure 3: Spread density at T = 1 for s0 = 20 bp with r = 0.05, µ = 0.06,
δ = 0.03, σ = 0.2.

6 Derivatives

6.1 Credit Default Swaps

Rather than pricing individual debt obligations that make up the total debt
capitalization D0 = D(S0), let us consider the pricing of a credit default swap
that gives the right to immediately recover the current value of an underlying
nominal perpetual debenture in case of a future credit event.

Define the credit event by the passage Sτ = L′ when the asset value falls
to a level where earnings no longer support interest payments. Say a swap is
originated on date t with maturity T . The swap payoff in the event of default
at time τ ≤ T is 1 − D(L′)/D(St) per unit of notional. The discounted risk-
neutral expected value of the payoff is funded by an annuity with maturity
τ ∧ T whose constant payment is the T -year CDS-implied yield spread.
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The spread is therefore defined by

0 = Ẽt

{
sswap(t, T ) · 1− e−r·((τ∧T )−t)

r
−
(

1− D (L′)
D (St)

)
·H(T − τ) · e−r·(τ−t)

}
or

sswap(t, T ) = r ·
1− D(L′)

D(St)

1−e−r·(T−t)·(1−P̃rt{τ<T})
Ẽt{e−r·(τ−t)·H(T−τ)} − 1

(6.1)

in general for t < T .
We can use (D.20) to evaluate the risk-neutral expectations, obtaining the

following result6.

sswap(t, T ) = st·
dt − 1

dt ·
1−e−r·(T−t)·

(
Φ

(
log dt−(r−σ′2/2)·(T−t)

σ′·
√

T−t

)
−d

2·r/σ′2−1
t ·Φ

(
− log dt−(r−σ′2/2)·(T−t)

σ′·
√

T−t

))
Φ

(
− log dt+(r+σ′2/2)·(T−t)

σ′·
√

T−t

)
+d

2·r/σ′2+1
t ·Φ

(
− log dt−(r+σ′2/2)·(T−t)

σ′·
√

T−t

) − 1

(6.2)

where

dt =
(

St

L′

)γ

=
(

1 +
divt

int

)γ

(6.3)

can be defined in terms of the dividend and interest payment rates;

σ′ = σ · γ (6.4)

is shorthand for the effective volatility of this quantity; and

st =
int
Dt

− r (6.5)

is the perpetual spread introduced in (2.5) expressed here in terms of the in-
terest payment rate and the aggregate debt capitalization.

A consequence of the accessible default is that

lim
T→t

sswap(t, T ) = 0

That is, the firm should be able to borrow at a rate close to risk-free for very
short term loans such as commercial paper.

For very long-term swaps, I can show that

lim
T→∞

sswap(t, T ) = st

Since the perpetual spread does not depend on L′, long-term spreads are evi-
dently a function of ultimate liquidation, not interim financial distress.

6This has been corrected from the 2006 version following the comments of Simon Babbs.
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Furthermore, I can show that

∃ T ′ > t 3 ∂

∂T
sswap(t, T ) < 0 ∀ T > T ′

Since the spread is positive and continuous in term, it must climb to some
peak value and then converge to the asymptote from above; i.e. the spread
term structure is generally “humped”.

0 5 10 15 20 25 30
term HyrsL

5

10

15

20

25

spread HbpL

Figure 4: CDS spread and asymptotic level for S0 = 100 with r = 0.05,
δ = 0.03, σ = 0.2, and L = 20.

6.2 Equity Options

We can use the results from Appendix D.2 to value European-style derivatives
on the equity value.

For example, consider a call expiring at T struck at X. The value of this
for t < T is

e−r·(T−t) · Ẽt

{(
L · fγ

(
eσ·(B̃′

T−t−M)
)
−X

)
·H
(
B̃′

T−t −B
)}

(6.6)

where

B = M +
log f−1

γ (X/L)
σ

M = −
log f−1

γ (Et/L)
σ

and
θ =

γ · σ
2

− r

γ · σ
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in the risk-neutral version. Since fγ(·) is a linear combination of powers of the
argument, we can use (D.16) to write down the following result.

e−r·(T−t) · Ẽt {max (ET −X, 0)} =

L · e−r·(T−t) ·
{

e(θ+σ/2)·σ·(T−t)−σ·M · Φ
(
−B + (θ + σ) · (T − t)√

T − t

)
− e(θ+σ/2)·(σ·(T−t)+2·M) · Φ

(
2 ·M −B + (θ + σ) · (T − t)√

T − t

)
−
(

eσ·(B−M) +
1
γ
· e−γ·σ·(B−M)

)
· Φ
(
−B + θ · (T − t)√

T − t

)
+
(

eσ·(B−M)+2·θ·M +
1
γ
· e−γ·σ·(B−M)+2·θ·M

)
· Φ
(

2 ·M −B + θ · (T − t)√
T − t

)
+

1
γ
· er·(T−t)+γ·σ·M · Φ

(
−B + (θ − γ · σ) · (T − t)√

T − t

)
− 1

γ
· er·(T−t)+(2·θ−γ·σ)·M · Φ

(
2 ·M −B + (θ − γ · σ) · (T − t)√

T − t

)}
(6.7)

In comparing this to the Black-Scholes formula, note that the equivalent
instantaneous dividend yield is

δ′t =
δ · f−1

γ (Et/L)− r ·
(
1 + 1

γ

)
Et/L

(6.8)

The implied volatility here is a function of the level of the equity, the strike
price and term of the option, and the parameters of the model. As a baseline,
we know that the instantaneous volatility of equity is

σ′t = σ · Ωt (6.9)

The implied volatility of near-the-money options is generally close to the
instantaneous equity volatility. The downward slope to the curve is a typical
pattern observed in practice.

It is also worth noting that this model gives a dependence between implied
volatility and the level of the underlying equity value. This pattern has been
termed the leverage effect.

From the observed market price of derivatives, the asset volatility σ can be
implied.

It is important to contrast the preceding analysis with the compound option
approach taken by Geske (1979) where the default option is assumed to have
fixed term and European-style exercise. Furthermore, modeling the equity
value as an option premium obscures the fundamental role of dividends.

7 Conclusion

The structural model with perpetual debt is surprisingly tractable, yielding
consistent exact results for several important classes of securities, include eq-
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Figure 5: Implied Black-Scholes volatility for a one-year option with E0 = 100,
r = 0.05, δ = 0.03, σ = 0.2, and L = 20.

uity, corporate debt, equity options, and default swaps.
Three key mathematical observations lead to these results: First, careful

consideration of liability cashflows allows one to construct an arbitrage-free
model with no explicit time dependence; second, relevant quantities in this
setting are simple functions of a stopped drifted brownian motion; and third,
evaluating expectations (under the risk-neutral or the real-world measure) of
functions of a stopped drifted brownian motion is straight-forward. These
observations are familiar to students of the analytical treatment of exotic op-
tions. Their combination into a coherent structural model is, I believe, novel
and valuable.

I expect this framework to become the basis for a more consistent treatment
of equity and debt securities, and ultimately lead to further illumination of the
underlying economic determinants of investment risk and value.
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A Calibration Example

Calibrating the model entails identifying values for the following parameters
and levels

r risk-free interest rate
σ asset volatility rate
δ asset payout rate
µ asset growth rate
K asset put strike
S0 enterprise value

Here I will describe one possible method to achieve this, but others might be
more suitable. The objective, of course, is to identify values for the parameters
that are as stable as possible, and values for the levels that are as current and
accurate as possible.

A.1 Risk-Free Interest

The risk-free rate has several roles in this model, but its most important use
is in valuing perpetuities. Therefore, we are interested in a stable estimate for
the long-term risk-free rate.

As an alternative to a complete bootstrap, let us focus on the bellwether
ten- and thirty-year government obligations and note the following fact about
continuous par yields, yT .

1− e−30·r30

y30
− 1− e−10·r10

y10
=
∫ 30

10

e−t·rt dt (A.1)

Let us assume that r is the constant value of rt that solves this. This leads
to the specification

1
y30

+
(

1
r
− 1

y30

)
· e−30·r =

1
y10

+
(

1
r
− 1

y10

)
· e−10·r (A.2)

which can be solved numerically for r.
For example, on May 31, 2006, the conventional yield on the T 5-1/8 5/16

was 5.121%, and the conventional yield on the T 4-1/2 2/36 was 5.229%. Con-
verting from semi-annual to continuous compounding gives y10 = 0.0506 and
y30 = 0.0516 and solving (A.2) gives r = 0.0528 per year.

A.2 Asset Put Strike

Let us use IBM as our example. In 1Q06, IBM reported interest expense of 66
million dollars, which we can annualize to get a projected 264 million dollars
for all of 2006. Since the annual interest expense in our model is r ·K, we can
infer that K = 5, 001 million dollars.
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A.3 Market Capitalization

Based on the May 31 closing price of 79.90 per share and the most recent count
of 1,550.395 million shares outstanding, we know that the market capitalization
of IBM is E0 = 123, 877 million dollars.

A.4 Asset Payout Rate

IBM’s most recently declared quarterly dividend was 30 cents per share. This
means that δ ·S0 = 2, 124 million dollars per year including interest payments.

If we can assume that γ is sufficiently large (which we can verify later), then
we can use the limit

lim
γ→∞

S0 = E0 + K (A.3)

to determine that δ = 0.0165 per year, approximately.

A.5 Asset Volatility Rate

If we can assume that γ is sufficiently large, then we can use the limit

lim
γ→∞

Ω0 = 1 +
K

E0
(A.4)

and the observation that the implied volatility on near-the-money options is
close to σ · Ω0 for all terms to expiration.

For example, the Jan ’08 100 calls on IBM closed with an implied volatility
of about 18.1%. Dividing by the asymptotic equity elasticity gives σ = 0.175
per year, approximately.

Combining r, δ, and σ, we get that γ = 2.67, and applying this to the asset
put strike, we get that L = 3, 638 million dollars.

A.6 Enterprise Value

Now that we have γ, we do not need to depend further on approximations. We
can use the relationship

S0 = L · f−1
γ

(
E0

L

)
(A.5)

to derive the enterprise value. In this case, we get S0 = 128, 877 million dollars,
which is very close indeed to the approximate value above in (A.3), confirming
the assumption.

A.7 Spreads

For May 31, 2006, the five- and ten-year indicative CDS spreads for IBM were
15 and 34 basis points respectively. These values are significantly higher than
the values given by (6.2) based on the prior calibration. In fact, these spreads
are consistent with an asset volatility level closer to σ = 0.38.
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This inconsistency is common to all structural models. Empirical work on
shocks and stochastic volatility such as Zhang, Zhou & Zhu (2005) may offer a
way forward towards resolving this.

A.8 Asset Growth Rate

The cum div asset growth rate, µ, is not necessary for any valuations, but it is
part of the description of horizon values. Various approaches could be taken to
estimate this, including application of the capital asset pricing model, analysis
of the growth rate of reported accounting earnings, or interpretation of obligor
credit ratings. I will not go into this here.
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B Black-Scholes

To avoid arbitrage, any asset that produces dividends at a rate δ and has a
value V that depends on time t and the values Vi of other assets that produce
dividends δi must satisfy the following version of the Black-Scholes equation,

∂V

∂t
+
∑

i

∂V

∂Vi
· Vi · (r − δi) + 1

2 ·
∑
i,j

∂2V

∂Vi ∂Vj
· Vi · Vj · σi,j = V · (r − δ) (B.1)

for risk-free interest r and asset return covariance σi,j .
For the perpetual American-style put, p, there is no dividend or explicit

time dependence, and the dependent security is S which produces a dividend
δ · S and has volatility σ. The Black-Scholes equation is

∂p

∂S
· S · (r − δ) + 1

2 ·
∂2p

∂S2
· S2 · σ2 = p · r (B.2)

We can verify by substituting in the solution (2.1) that this is satisfied
provided

− γ · (r − δ) + 1
2 · γ · (γ + 1) · σ2 = r (B.3)

and that this in turn is satisfied by the definition of γ in (2.2).
The debt, D = K − p, produces a dividend r ·K and has two underlyings,

S and K, which produce dividends δ ·S and r ·K. The Black-Scholes equation

− ∂p

∂S
· S · (r − δ)− 1

2 ·
∂2p

∂S2
· S2 · σ2 = D · r −K · r (B.4)

is confirmed by noticing that both sides are equal to −r · p.
The equity, E = S − K + p, has the same two underlings, S and K. We

can verify that the Black-Scholes equation is satisfied if the dividend equals
δ · S − r ·K.
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C Moments

We can use the result (D.10) to evaluate moments of horizon values of equity
and debt.

Consider the definition of fγ(·) in (4.2) upon which the definitions of the
equity and debt values are based. Natural powers of this are linear combinations
of terms involving powers of the argument.

fγ(x)N =
N∑

i=0

N−i∑
j=0

(−1)N−i−j ·
(

N

i

)
·
(

N − i

j

)
· (1 + γ)N−i−j

γN−i
· xi−γ·j (C.1)

The horizon value of the shareholders’ equity is defined in terms of fγ(·) in
(4.1). Using (D.10), we can write down an expression for the N -th moment of
ET .

E0

{
EN

T

}
= LN ·

N∑
i=0

N−i∑
j=0

(−1)N−i−j ·
(

N

i

)
·
(

N − i

j

)

· (1 + γ)N−i−j

γN−i
· e(i−γ·j)·(µ−δ+(i−γ·j−1)·σ2/2)·T

·

((
S0

L

)i−γ·j

· Φ

((
µ− δ +

(
i− γ · j − 1

2

)
· σ2
)
· T + log S0/L

σ ·
√

T

)

−
(

S0

L

)1−2·µ−δ

σ2

· Φ

((
µ− δ +

(
i− γ · j − 1

2

)
· σ2
)
· T − log S0/L

σ ·
√

T

))
(C.2)

Similarly, using x − fγ(x) in place of fγ(x), we see that the N -th moment
of the horizon value of the debt is

E0

{
DN

T

}
= LN ·

N∑
i=0

(−1)i ·
(

N

i

)
· (1 + γ)N−i

γN
· e−γ·i·(µ−δ−(γ·i+1)·σ2/2)·T

·

((
S0

L

)−γ·i

· Φ

((
µ− δ −

(
γ · i + 1

2

)
· σ2
)
· T + log S0/L

σ ·
√

T

)

−
(

S0

L

)1−2·µ−δ

σ2

· Φ

((
µ− δ −

(
γ · i + 1

2

)
· σ2
)
· T − log S0/L

σ ·
√

T

))
(C.3)

For short horizons, we can use the approximation in (D.11). Some central
moments to lowest order in T are

E0 {ET } ≈

E0 + L ·
(

S0

L

)−γ

·

(
(µ− δ) ·

((
S0

L

)1+γ

− 1

)
+ 1

2 · σ
2 · (1 + γ)

)
· T (C.4a)
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var0 {ET } ≈ L2 ·
(

S0

L

)−2·γ

·

((
S0

L

)1+γ

− 1

)2

· σ2 · T (C.4b)

skew0 {ET } ≈ 3 ·

(
1 +

1 + γ(
S0
L

)1+γ − 1

)
· σ ·

√
T (C.4c)

kurt0 {ET } ≈ 3 + 16 ·

1 + (1 + γ) ·
7−γ

4 ·
(

S0
L

)1+γ
+ γ − 1((

S0
L

)1+γ − 1
)2

 · σ2 · T (C.4d)

E0 {DT } ≈ D0 + L ·
(

S0

L

)−γ

·
(
µ− δ − 1

2 · σ
2 · (1 + γ)

)
· T (C.5a)

var0 {DT } ≈ L2 ·
(

S0

L

)−2·γ

· σ2 · T (C.5b)

skew0 {DT } ≈ −3 · γ · σ ·
√

T (C.5c)

kurt0 {DT } ≈ 3 + 16 · γ2 · σ2 · T (C.5d)

For comparison, these are the low-order central moments of the log-normal
assets for small T .

E0 {ST } ≈ S0 + S0 · (µ− δ) · T (C.6a)

var0 {ST } ≈ S2
0 · σ2 · T (C.6b)

skew0 {ST } ≈ 3 · σ ·
√

T (C.6c)

kurt0 {ST } ≈ 3 + 16 · σ2 · T (C.6d)

19



D Excursion of a Brownian Motion

For background, see Karatzas & Shreve (1998).

D.1 Joint Minimum and Terminal Values

Consider a brownian motion Bt. Define

MT = min
0<t<T

Bt (D.1)

From the reflection principle, we know

Pr0 {MT < m , BT > b} = Pr0 {BT < 2 ·m− b} (D.2)

Since BT ∼ N(0, T ), we know

Pr0 {MT ∈ dm , BT ∈ db}

= − ∂2

∂b ∂m

(
1√

2π · T

∫ 2·m−b

−∞
e−z2/(2·T ) dz

)
db dm

= 2 · b− 2 ·m
T

· e−(b−2·m)2/(2·T )

√
2π · T

db dm (D.3)

for m < 0 and b > m.
Define a new stochastic process B̃t by adding a drift term.

B̃t = Bt + θ · t (D.4)

Any probabilities associated with B̃ can be expressed in terms of probabil-
ities associated with B and the Radon-Nikodym change of measure.

Z (T, b) =
Pr0 {BT ∈ db}

Pr0
{

B̃T ∈ db
} =

e−b2/(2·T )

√
2π · T

/
e−(b−θ·T )2/(2·T )

√
2π · T

= e−θ·b+ θ2·T
2 (D.5)

Using this, we know

Pr0
{

M̃T ∈ dm , B̃T ∈ db
}

=
Pr0 {MT ∈ dm , BT ∈ db}

Z(T, b)
db dm

= 2 · e2·θ·m · b− 2 ·m
T

· e−(b−2·m−θ·T )2/(2·T )

√
2π · T

db dm (D.6)

in the original measure.
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So the expectation of any function that depends on the minimum and final
value of a drifted brownian motion is

E0

{
f

(
min

0<t<T
[Bt + θ · t] , BT + θ · T

)}
=
∫ 0

−∞

∫ ∞

m

f(m, b) · 2 · e2·θ·m · b− 2 ·m
T

· e−(b−2·m−θ·T )2/(2·T )

√
2π · T

db dm (D.7)

For example, to calculate the marginal probability that the minimum value
attained between time zero and T falls below some threshold M < 0, we can
evaluate the integral above with

f(m, b) = H(M −m)

where H(·) is the step function.
This yields

Pr0

{
min

0<t<T
[Bt + θ · t] < M

}
= e2·θ·M · Φ

(
M + θ · T√

T

)
+ Φ

(
M − θ · T√

T

)
(D.8)

where Φ(·) is the standard normal CDF.
Note that this probability goes to zero as T → 0. In fact, application of

L’Hôpital’s Rule reveals that qT (S0) grows slower than any power of T .
Also, for T →∞, the limit of the probability is

Pr0

{
min
t>0

[Bt + θ · t] < M

}
=

{
e2·θ·M θ > 0
1 otherwise

(D.9)

Another case is
f(m, b) = H(m−M) · eb·N

which evaluates to

E0

{
H

(
min

0<t<T
[Bt + θ · t]−M

)
· e(BT +θ·T )·N

}
= eN ·(θ+N/2)·T

·
(

Φ
(

(θ + N) · T −M√
T

)
− e2·(θ+N)·M · Φ

(
(θ + N) · T + M√

T

))
(D.10)

For small T , this is approximately

E0

{
H

(
min

0<t<T
[Bt + θ · t]−M

)
· e(BT +θ·T )·N

}
≈ eN ·(θ+N/2)·T (D.11)

consistent with a log-normal random variable.
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D.2 Terminal Value

We are interested in the distribution of the terminal value of a drifted brownian
motion subject to an absorbing lower boundary. To calculate the probability
that the terminal value does not exceed a given level, we can evaluate the
expectation in (D.7) with

f(m, b) = H(M −m) + H(m−M) ·H(B − b) (D.12)

which evaluates to

Pr0

{
min

0<t<T
[Bt + θ · t] < M ∨

(
min

0<t<T
[Bt + θ · t] > M ∧BT + θ · T < B

)}
= Φ

(
B − θ · T√

T

)
+ e2·θ·M · Φ

(
2 ·M −B + θ · T√

T

)
(D.13)

for B ≥ M .
Let us refer to the drifted and stopped brownian motion by the symbol B̃′

t.

B̃′
T =

{
BT + θ · T min0<t<T [Bt + θ · t] > M

M otherwise
(D.14)

Differentiating, we see that the density of this final value is

Pr0
{

B̃′
T ∈ db

}
=


(
1− e2·M ·(b−M)/T

)
· e−(b−θ·T )2/(2·T )/

√
2π · T db b > M

e2·θ·M · Φ
(

M+θ·T√
T

)
+ Φ

(
M−θ·T√

T

)
b = M

0 b < M

(D.15)
Note that for values much greater than M , the density of B̃′

T is approxi-
mately normal.

The pole at M is a non-essential singularity.
In order to value European-style contingent claims on equity and debt, it

will be useful to use the following result.

E0

{
eB̃′

T ·N ·H
(
B̃′

T −B
)}

= eN ·(θ+N/2)·T

·
(

Φ
(
−B + (θ + N) · T√

T

)
− e2·(θ+N)·M · Φ

(
2 ·M −B + (θ + N) · T√

T

))
(D.16)

for B ≥ M and any N .

D.3 Passage Time

To find the distribution of the passage time τM corresponding to some lower
level M , we can again use the reflection principal for an un-drifted brownian
motion.

Pr0 {τM < t} = 2 · Pr0 {Bt < M} =
2√

2π · t

∫ M

−∞
e−b2/(2·t) db (D.17)
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or
Pr0 {τM ∈ dt} =

−M√
2π · t3

· e−M2/(2·t) dt (D.18)

for T > 0 and M < 0.
To incorporate a drift θ, we can apply the same change of measure as before.

Pr0
{
τθ
M ∈ dt

}
=

−M√
2π · t3

· e−M2/(2·t) · eθ·M−θ2·t/2 dt

=
−M√
2π · t3

· e−(θ·t−M)2/(2·t) dt (D.19)

We will be interested in evaluating expectations of the following form.

E0

{
e−α·τθ

M ·H(T − τθ
M )
}

=

eM ·(θ+
√

θ2+2·α) · Φ

(
M + T ·

√
θ2 + 2 · α√
T

)

+ eM ·(θ−
√

θ2+2·α) · Φ

(
M − T ·

√
θ2 + 2 · α√
T

)
(D.20)

Letting α = 0 and T → ∞, we see that Pr0
{
τθ
M < ∞

}
is consistent with

(D.9). In particular, if θ > 0, then this probability is less than unity, indicating
that there is a chance that the threshold is never breached.

23



References

Black, Fischer & Myron Scholes (1973), ‘The pricing of options and corporate
liabilities’, Journal of Political Economy 81(3), 637+.

Black, Fisher & John C. Cox (1976), ‘Valuing corporate securities: Some effects
of bond indenture provisions’, Journal of Finance 31(2), 351+.

Collin-Dufresne, Pierre & Robert S. Goldstein (2001), ‘Do credit spreads reflect
stationary leverage levels?’, Journal of Finance 56(5), 1929+.

Geske, Robert (1979), ‘The valuation of compound options’, Journal of Finan-
cial Economics 7(1), 63+.

Ho, Thomas S.Y. & Sang Bin Lee (2004), The Oxford Guide to Financial
Modeling, Oxford University Press, New York, NY, section 12.6, pp. 430–
440.

Karatzas, Ioannis & Steven E. Shreve (1998), Brownian Motion and Stochas-
tic Calculus, Graduate Texts in Mathematics, second edn, Springer, New
York, NY.

Leland, Hayne E. (1994), ‘Corporate debt value, bond covenants, and optimal
capital structure’, Journal of Finance 49(4), 1213+.

Leland, Hayne E. & Klaus B. Toft (1996), ‘Optimal capital structure, endo-
gencous bankruptcy, and the term structure of credit spreads’, Journal of
Finance 51(3), 987+.

Longstaff, Francis A. & Eduardo S. Schwartz (1995), ‘A simple approach to
valuing risky fixed and floating rate debt’, Journal of Finance 50(3), 789+.

McDonald, Robert L. (2006), Derivatives Markets, Addison-Welsey Series in
Finance, 2nd edn, Addison-Wesley, Boston, MA, chapter 16, pp. 503–546.

Merton, Robert C. (1973), ‘Theory of rational option pricing’, Bell Journal of
Economics and Management Science 4(1), 141+.

Merton, Robert C. (1974), ‘On the pricing of corporate debt: The risk structure
of interest rates’, Journal of Finance 29(2), 449+.

Zhang, Benjamin Yibin, Hao Zhou & Haibin Zhu (2005), Explaining credit
default swap spreads with the equity volatility and jump risks of individual
firms. FEDS working paper.

24


	Introduction
	Balance Sheet Model
	Equity and Debt
	Black-Scholes

	Default Model
	Liquidation
	Financial Distress

	Increments
	Finite Increments
	Instantaneous Increments

	Densities
	Equity Density
	Spread Density

	Derivatives
	Credit Default Swaps
	Equity Options

	Conclusion
	Calibration Example
	Risk-Free Interest
	Asset Put Strike
	Market Capitalization
	Asset Payout Rate
	Asset Volatility Rate
	Enterprise Value
	Spreads
	Asset Growth Rate

	Black-Scholes
	Moments
	Excursion of a Brownian Motion
	Joint Minimum and Terminal Values
	Terminal Value
	Passage Time


