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Say X is the random variable that will drive market prices between today, time 7',
and the next decision date, time 7' 4+ 7 with an investment horizon of 7 (all time in
years).

Pryr =g(X; Pr)
and say that we have used historical data to estimate the parameters of the distribution
of the market invariants under a different horizon, 7; e.g., from { Pr, Pr_7, Pr_2.7 ..., }.

We know from the properties of characteristic functions that

ox(t) = ¢y ()7

If the first two moments exist, we also know that
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Since the covariance is defined as

covY =E(X-X') —EX -EX’
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we have that
covX = I -covY

Furthermore, since
stdY = diag v/diagdiagcovY

we have the “square-root rule” for time-scaling market invariants.
std X = /Z-stdY
This is valid result regardless of the distribution of Y (as long as it has two moments).

In general, X will not belong to the same class of distributions as Y, unless Y is in the
stable family, including the normal, Cauchy, and Lévy.



