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Say X is the random variable that will drive market prices between today, time T ,
and the next decision date, time T + τ with an investment horizon of τ (all time in
years).

PT+τ = g(X;PT )

and say that we have used historical data to estimate the parameters of the distribution
of the market invariants under a different horizon, τ̃ ; e.g., from {PT , PT−τ̃ , PT−2·τ̃ . . . , }.

We know from the properties of characteristic functions that
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If the first two moments exist, we also know that
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Since the covariance is defined as

cov Y = E (X · X ′) − EX · EX ′
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we have that
cov X = τ

τ̃ · cov Y

Furthermore, since
std Y = diag

√
diag diag cov Y

we have the “square-root rule” for time-scaling market invariants.

stdX =
√

τ
τ̃ · stdY

This is valid result regardless of the distribution of Y (as long as it has two moments).
In general, X will not belong to the same class of distributions as Y , unless Y is in the
stable family, including the normal, Cauchy, and Lévy.
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