FM 5031 - Financial Mathematics Practioner Sequence
Module - Portfolio Optimization
Instructor - John Dodson
Fall 1 - Introduction & Random Variables
- Introduction
- Random Variables
- Characterizations
- Transformations
- Expectation
- Law of Large Numbers
- Monte Carlo
- Summary Statistics
- Normal Distribution
- Change of Measure
- Mixtures
- Taxonomy
Fall 2 - Dependence
- Independence
- Conditioning & Margining
- Exercise: Bivariate Normal
- Dependence
- Bayes' Rule
- Covariance
- Cholesky Decomposition
- Spectral Decomposition
- Mahalanobis Distance
- Multivariate Distributions
Fall 3 - Market Models
- Modeling the Market
- Securities Markets
- Market Conventions
- Investment Horizon
- Quest for Invariance
- Identifying Invariants
- Projecting Invariants
- Mapping Invariants
- Sample Problems
- Postscript
Fall 4 - Estimators
- Motivation
- Contest
- Sample
- Estimator
- Maximum Likelihood Estimator
- Bayesian Estimation
- Bayesian Estimator
Fall 5 - Evaluating Allocations
- Motivation
- Objectives
- Satisfaction
- Coherent Properties
- Value-at-Risk
- Expected Shortfall
- Expected Utility
Fall 6 - Mean-Variance Optimization
- Constraints
- Optimization
- Dimension Reduction
- Analytical Solution
- Log-Normal Model
- Time Scaling
- Benchmarks
Fall 7- Bayesian Optimization
- Motivation
- Von Neumann-Morenstern
- Robust Optimization
- Michaud Re-sampling
- Black-Litterman