
Risk & Asset Allocation
Assignment

John A. Dodson

October 12, 2011

This assignment will be worth half of your module grade for this semester. It is due in the Netfiles
dropbox at 5:30 PM on October 26. You are welcome to provide code to support your work, but do not
expect me to run it to generate your results. Results should be provided in text, Acrobat, Word, or Excel
format.

Please work individually.

Problems

For this assignment, you will be working with the thirty components of the Dow Jones Industrial Average.
You can read about these components on Yahoo! Finance under the symbol ˆDJI.

1. Use two years of business-daily historical data to estimate the standard deviation of the value at
the close of November 2, 2011 of one share invested in each of the Dow Jones Industrial Average
components at the close of October 19, 2011. Assume that each value is lognormal and that the
conditional variance of the daily returns is NGARCH(1,1).

Make sure to project the one-day return variance forecasts to the ten-day investment horizon. Your
results should be in units of dollars per share.

2. Use an estimator for Kendall’s tau applied to the devolatized returns from above to fit the parameters
of a Gaussian copula for the joint distribution of these thirty random variables.

Solution

In order to make the numerical estimator for the GARCH parameters more robust, as I recommended in
class, I adapted my M-file from the previous homework for the conditional variances to accept logα and
log β instead of α and β since we only care about positive values for these parameters (γ could be negative).
I also adapted it to replace a negative ω with NaN to prevent any negative or unreal conditional variances.

function [h omega forecast h0]=NGARCH2(epsilon,params)
% NGARCH(1,1) conditional variances
% params = [log(alpha) log(beta) gamma]
% epsilon(1) is the oldest residual
alpha=exp(params(1));
beta=exp(params(2));

1



gamma=params(3);
omega=mean(epsilon.ˆ2)*(1-alpha*(1+gammaˆ2)-beta); % variance targeting
if omega<0

omega=NaN;
end
epsilon=[epsilon;NaN]; % add on the next observation for forecasting
h=nan(size(epsilon));
h0=omega/(1-alpha*(1+gammaˆ2)-beta); % unconditional variance
h(1)=omega+h0*(alpha*gammaˆ2+beta);
% h0=omega/(1-alpha*gammaˆ2-beta); % assume h(0)=h(1)
% h(1)=h0;
for i=2:length(h)

h(i)=omega+beta*h(i-1)+alpha*(epsilon(i-1)+gamma*sqrt(h(i-1)))ˆ2;
end
forecast=h(end);
h(end)=[]; % remove forecast

Notice that I have included code for both the options for seeding h0 here, although I have commented out
the version based on letting h0 = h1. This version leads to somewhat different results.

This function usually returns just an array of conditional variances to correspond with the input array of
residuals, but it also optionally returns the value for ω, the initial value h0, and the one-step forecast hT+1.

For the first part of my script for the solution, I load the data using a (slightly) modified version of
yahoo_prices() (available on-line). It returns a timeseries collection of adjusted close prices and a
structure of (unadjusted) final close prices1.

I extract the column and row headers for my results in the variables tickers and dates. I exclude
the index from the list of tickers, but I use it to re-sample the constituent prices in order to fill forward any
missing values (presumably none).

%% load historical price data
[price last]=yahoo_prices({'ˆDJI'...

'AA' 'AXP' 'BA' 'BAC' 'CAT' 'CSCO' 'CVX' 'DD' 'DIS' 'GE'...
'HD' 'HPQ' 'IBM' 'INTC' 'JNJ' 'JPM' 'KFT' 'KO' 'MCD' 'MMM'...
'MRK' 'MSFT' 'PFE' 'PG' 'T' 'TRV' 'UTX' 'VZ' 'WMT' 'XOM'},...
'19-Oct-2009','19-Oct-2011');

tickers=gettimeseriesnames(price);
index_ticker=tickers{1};tickers(1)=[];
% remove holidays and fill in missing values based on the index
price=resample(price,price.Time(¬isnan(price.(index_ticker).Data)));
dates=getabstime(price);

In the next part of the script, I set up the quasi-MLE objective function, a timeseries collection to hold
the resulting conditional variances, and an array z to hold the standardized residuals.

Then I loop through the tickers and solve and store the MLE GARCH parameters, the corresponding
optimal log-likelihood, the exit flag from fminsearch(), the timeseries of the conditional variances, and
the array of the standardized residuals (in ticker and date order).

A the bottom of the loop, I use the MLE parameters and the one-day GARCH forecast to project the ten-
day price standard deviation. First, I evaluate the ten-day log-return mean and variance using the techniques
from our GARCH discussion. Then, I apply the “delta rule” to convert this into a price variance,

std g(X) ≈
∣∣g′ (EX)

∣∣√varX

1the previous version returned an array instead of a structure

2



where g(X) = pT e
X .

Alternatively, I could have used the exact result for var eX for X ∼ N(µ, σ2) which is numerically
similar for σ � 1.

%% fit GARCH, forecast variance, and standardize residuals
obj=@(h,epsilon)sum(log(2*pi*h)+epsilon.ˆ2./h); % quasi-MLE objective
condvar=tscollection(dates,'Name','NGARCH conditional variance');
condvar.TimeInfo=price.TimeInfo;
z=[];
for ticker=tickers;j=ticker{:};

y=log(price.(j).Data(2:end,:)...
./price.(j).Data(1:end-1,:)); % log total returns

m=zeros(size(y)); % conditional means (zero)
epsilon=y-m; % residuals
[params val flag.(j)]=fminsearch(@(params)...

obj(NGARCH2(epsilon,params),epsilon),[log(.1) log(.8) 0]);
logL.(j)=-val; % log likelihood
[h omega.(j) h1 h0]=NGARCH2(epsilon,params);
condvar=addts(condvar,timeseries([h0;h],dates,'Name',j));
alpha.(j)=exp(params(1));
beta.(j)=exp(params(2));
gamma.(j)=params(3);
phi=alpha.(j)*(1+gamma.(j)ˆ2)+beta.(j);
varX=(1-phiˆ10)/(1-phi)*(h1-omega.(j)/(1-phi))...

+10*omega.(j)/(1-phi); % ten-day log-return variance forecast
stdP.(j)=last.(j)*sqrt(varX); % price standard deviation by ∆ rule
z=[z epsilon./sqrt(h)]; % standardized residuals

end
clear ticker j y m epsilon params val h h0 h1 phi varX

For the second question, I asked you to work with Kendall’s tau two ways: firstly, with a sample estima-
tor, and secondly with the population result for a gaussian copula.

τ̂ =
(
T

2

)−1 T∑
1≤j<k≤T

sgn(zk − zj)′ sgn(zk − zj)

In the first part, I accumulated the concordances of the standardized returns for each pair of tickers for
each pair of dates. I did this with a nested loop over the dates and an outer product over the tickers.

For more about this metric, see §5.5 in McNeil et. al..

%% estimate concordances of standardized residuals
count=0;
tau=zeros(size(z,2));
for j=1:(size(z,1)-1)

for k=(j+1):size(z,1)
conc=sign(z(k,:)-z(j,:));
tau=tau+conc'*conc;
count=count+1;

end
end
tau=tau/count;
tau=tau-diag(diag(tau))+eye(size(tau)); % adjust diagonal for ties
clear count j k conc

3



Notice that in the final expression for tau, I had to adjust for a small number of ties in which the concor-
dance was neither +1 nor -1. It is reasonable to use a value of 0 for off-diagonal values of Kendall’s tau in
this case, but a random variable has concordance +1 with itself by definition.

Finally, we can use this estimate for Kendall’s tau to calibrate our copula. To do this, we apply the
population result

τ =
2
π

arcsin ρ

hence
ρ̂ , sin

π

2
τ̂

component-wise.

%% identify with Kendall tau for a Gaussian copula
rho=sin(pi/2*tau);

One has to be a little careful with this approach, because ρ̂ must be a positive-definite symmetric matrix
(with unit diagonal). By construction, τ̂ is positive definite, but the component-wise transformation may
destroy this property. I believe this issue is rare in practice, but McNeil et. al. does discuss how to handle it.

These M-files, along with a MAT file of the results, are available on-line.

4


