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Say X is the invariant random variable that will drive market prices PT+τ , g(X; pT ) between to-
day, time T , and the next decision date, time T + τ with an investment horizon of τ (all time measured
in years) and say that we have used historical data to estimate the parameters of the characterization
of the random variable X̃ under a different (usually shorter) horizon, τ̃ ; e.g., from a timeseries sample
(pT , pT−τ̃ , pT−2τ̃ , . . .).

Furthermore, say our invariant mapping is additive in the sense that

g (x̃1; g (x̃2, pT−2τ̃ )) = g (x̃1 + x̃2; pT−2τ̃ )

which is true, for example, with the continuous version of total return (although the simple version of total
return is often an adequate approximation).

Then projecting X from X̃ essentially involves the transformation
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Since the covariance is defined as

cov X̃ = E
(
XX ′

)
− EX EX ′

we have that
covX = τ

τ̃ cov X̃

Furthermore, since

std X̃ = diag

√
diag diag cov X̃

we have the “square-root rule” for time-scaling market invariants.

stdX =
√

τ
τ̃ std X̃

This is valid regardless of the distribution of X̃ (as long as it has two moments).
Note that in general X will not belong to the same family of random variables as X̃ .
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