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Let us try out the two-step approach to determine the optimal portfolio under a single affine constraint
with objective linear in the market vector and index of satisfaction equal to the Cornish-Fisher expansion of
the 95% expected shortfall.

For an objective defined by ¥,, = o/ M and an affine constraint defined by d’«c = ¢, the analytic solution
to the optimal mean-variance portfolio satisfies
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We need to determine the level of 8 that maximizes the index of satisfaction, which we will take to be
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based on the Cornish-Fisher expansion, where ¢ is the CDF of a standard normal random variable and ¢ is
the spectrum for F Sy g5.

Since we can assume that the skewness of M is negligible, the skewness of ¥, is also negligible.
Furthermore, we can evaluate the integral in the expansion numerically.
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Let us assign zp.95 = 2.0627 - - -, so the integral above is —zg g95. The satisfaction is

S(a) = 'EM — zp.95v/a’ (CovM ) o

Substituting in (1), we get that the optimal value for 3 is
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From manipulation of the first-order condition, recognizing that
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we can determine that the solution is
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is the market price for risk.
In conclusion, the optimal portfolio is a(5*).



