Risk & Asset Allocation (Spring) Exercise for Week 4

John A. Dodson

February 13, 2013

Let us try out the two-step approach to determine the optimal portfolio under a single affine constraint with objective linear in the market vector and index of satisfaction equal to the Cornish-Fisher expansion of the 95% expected shortfall.

For an objective defined by $\Psi_{\alpha} = \alpha' M$ and an affine constraint defined by $d'\alpha = c$, the analytic solution to the optimal mean-variance portfolio satisfies

$$\alpha(\beta) = (1 - \beta)\alpha_{MV} + \beta\alpha_{SR} \tag{1}$$

for $\beta > 0$, where

$$\alpha_{MV} = \frac{c \left(\mathsf{Cov} M \right)^{-1} d}{d' \left(\mathsf{Cov} M \right)^{-1} d}$$

$$\alpha_{SR} = \frac{c \left(\mathsf{Cov} M \right)^{-1} \mathsf{E} M}{d' \left(\mathsf{Cov} M \right)^{-1} \mathsf{E} M}$$

We need to determine the level of β that maximizes the index of satisfaction, which we will take to be

$$\mathcal{S}(\alpha) = \mathsf{E}\,\Psi_\alpha + \sqrt{\mathsf{Var}\,\Psi_\alpha} \left(\mathcal{I}\left[\phi\Phi^{-1}\right] + \tfrac{1}{6}\left(\mathcal{I}\left[\phi\left(\Phi^{-1}\right)^2\right] - 1\right)\mathsf{Skew}\,\Psi_\alpha\right)$$

based on the Cornish-Fisher expansion, where Φ is the CDF of a standard normal random variable and ϕ is the spectrum for $ES_{0.95}$.

Since we can assume that the skewness of M is negligible, the skewness of Ψ_{α} is also negligible. Furthermore, we can evaluate the integral in the expansion numerically.

$$\mathcal{I}\left[\phi\Phi^{-1}\right] = \int_{0}^{0.05} \frac{\sqrt{2}\mathrm{erf}^{-1}(2p-1)}{0.05} dp \approx -2.0627\cdots$$

Let us assign $z_{0.95} = 2.0627 \cdots$, so the integral above is $-z_{0.95}$. The satisfaction is

$$S(\alpha) = \alpha' \mathsf{E} M - z_{0.95} \sqrt{\alpha' \left(\mathsf{Cov} M\right) \alpha}$$

Substituting in (1), we get that the optimal value for β is

$$\begin{split} \beta^* &= \arg\max_{\beta>0} \left((1-\beta)\alpha_{MV} + \beta\alpha_{SR} \right)' \mathsf{E} M \\ &- z_{0.95} \sqrt{ \left((1-\beta)\alpha_{MV} + \beta\alpha_{SR} \right)' \left(\mathsf{Cov} M \right) \left((1-\beta)\alpha_{MV} + \beta\alpha_{SR} \right)} \end{split}$$

From manipulation of the first-order condition, recognizing that

$$\mathsf{Cov}\left(\Psi_{lpha_{MV}},\Psi_{lpha_{SR}}-\Psi_{lpha_{MV}}
ight)=0$$

we can determine that the solution is

$$\beta^* = \begin{cases} 0 & \gamma \leq 0 \\ \sqrt{\frac{\operatorname{Var}\Psi_{\alpha_{MV}}}{\operatorname{Var}(\Psi_{\alpha_{SR}} - \Psi_{\alpha_{MV}})} \frac{1}{\left(\frac{z_{0.95}}{\gamma}\right)^2 - 1}} & 0 < \gamma < z_{0.95} \\ \infty & \gamma \geq z_{0.95} \end{cases}$$

where

$$\gamma = \frac{\mathsf{E} \left(\Psi_{\alpha_{SR}} - \Psi_{\alpha_{MV}} \right)}{\sqrt{\mathsf{Var} \left(\Psi_{\alpha_{SR}} - \Psi_{\alpha_{MV}} \right)}}$$

is the market price for risk.

In conclusion, the optimal portfolio is $\alpha(\beta^*)$.