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1 Joint Density

The density for a multivariate normal random variable is
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for positive-definite covariance matrix Σ of dimension n and mean vector µ.
For the in-class exercise this week, we have n = 2, µ = 0, and
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)
with correlation −1 < ρ < 1. Hence
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and the density simplifies to
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2 Conditional Density

According to the exercise, we are interested in the event X1 = 1 and what it tells us about X2. Prior to the
observation, we only have the marginal density for X2,

fX2(x2) =

∫ ∞
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which has entropy
HX2 = EX2 [− log fX2 (X2)] = log

√
2πe
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Once we have the observation on X1, we can work with the conditional density,

fX2|X1
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which has entropy
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Clearly HX2|X1
≤ HX2 . To the extent that there is correlation, the observation acts to lower the entropy of

the r.v. we are interested in describing.

3 Regression

We have demonstrated that (in the bivariate normal case at least) conditioning conveys information. We can
see this in a more familiar light by considering the general bivariate result with four additional parameters
and an arbitrary conditioning event, X1 = x1.

You can confirm that the general conditional density works out to be
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In other words,

X2|X1 ∼ N
(
µ2 + ρ

σ2

σ1
(x1 − µ1) , σ2

2

(
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))
suggesting the transformation

X2|X1 , α+ β1X1 + ε (1)

where

β1 =
cov (X1, X2)

varX1
(2a)

α = EX2 − β1 EX1 (2b)

ε ∼ N
(
0, varX2 − β2

1 varX1

)
(2c)

You may recognize this as the “population” result from classical statistics for ordinary least squares
(OLS) regression.

This observation is useful because it gives us direction not only on grounding classical regression in
modern estimation theory, but also on how we might adapt to situations where relationships are not well
described by linear correlations.
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