Risk \& Asset Allocation
 Case for Spring 2

John A. Dodson

January 29, 2014

This case previews of upcoming sessions in order to demonstrate the concept of an allocation-implied prior model. Let us examine the equilibrium allocation under exponential utility and normal markets.

Model

For a portfolio $\alpha_{0}+\alpha$ (α_{0} represents cash) with net asset value

$$
\begin{equation*}
w=\alpha_{0}+\alpha^{\top} p \tag{1}
\end{equation*}
$$

the gain/loss over τ years would be

$$
\begin{equation*}
\Psi=\alpha_{0} r \tau+\alpha^{\top} M \tag{2}
\end{equation*}
$$

where the market vector is

$$
\begin{equation*}
M=P-p \tag{3}
\end{equation*}
$$

with P the random variable for asset prices, including any cashflows, $\tau>0$ years in the future and r the (simple-interest) return on cash.

Let us assume that the market vector is normal,

$$
\begin{equation*}
M \sim \mathcal{N}(\mu \tau, \Sigma \tau) \tag{4}
\end{equation*}
$$

and that the preferences of the representative agent are described by exponential utility

$$
\begin{equation*}
u(\psi)=-e^{-\frac{\psi}{\zeta}} \tag{5}
\end{equation*}
$$

with absolute risk aversion $1 / \zeta>0$.
Let us consider the portfolios that satisfy a wealth constraint w^{\star} and maximize expected utility.

$$
\begin{align*}
\mathrm{E} u(\Psi) & =-e^{-\frac{\alpha_{0}}{\zeta} r \tau} \mathrm{E} e^{-\frac{\alpha \top}{\zeta} M} \tag{6}\\
& =-e^{-\frac{w^{\star}-\alpha \top}{\zeta}} r{ }^{-\frac{\alpha \top}{\zeta}} \mu \tau+\frac{1}{2} \frac{\alpha \top}{\zeta} \Sigma \tau \frac{\alpha}{\zeta} \tag{7}
\end{align*}
$$

So an optimal portfolio satisfies

$$
\begin{equation*}
\alpha^{\star} \in \arg \max _{\alpha} \alpha^{\top}(\mu-r p)-\frac{1}{2 \zeta} \alpha^{\top} \Sigma \alpha \tag{8}
\end{equation*}
$$

If the covariance is positive-definite, $\Sigma>0$ (which it would not be if cash were included in the market vector), the first-order condition on the optimal portfolio is

$$
\begin{equation*}
\mu=r p+\frac{1}{\zeta} \Sigma \alpha^{\star} \tag{9}
\end{equation*}
$$

This relationship, linking the market characterization to the investor utility and the optimal portfolio, can be the basis for an allocation-implied prior.

Notice that

$$
\begin{equation*}
\mathrm{E} \Psi^{\star}=w^{\star} r \tau+\frac{1}{\zeta} \operatorname{var} \Psi^{\star} \tag{10}
\end{equation*}
$$

and more generally that

$$
\begin{align*}
\mathrm{E} \Psi & =w r \tau+\frac{1}{\zeta} \operatorname{cov}\left(\Psi, \Psi^{\star}\right) \tag{11}\\
& =w r \tau+\frac{\operatorname{cov}\left(\Psi, \Psi^{\star}\right)}{\operatorname{var} \Psi^{\star}}\left(\mathrm{E} \Psi^{\star}-w^{\star} r \tau\right) \tag{12}
\end{align*}
$$

This is more recognizable as

$$
\begin{equation*}
\mathrm{E} \frac{\Psi}{w \tau}=r+\frac{\operatorname{cov}\left(\frac{\Psi}{w \tau}, \frac{\Psi^{\star}}{w^{\star} \tau}\right)}{\operatorname{var} \frac{\Psi^{\star}}{w^{\star} \tau}}\left(\mathrm{E} \frac{\Psi^{\star}}{w^{\star} \tau}-r\right) \tag{13}
\end{equation*}
$$

where the coefficient is akin to "beta" in the capital asset pricing model.
Consider a portfolio consisting of a single share of the i-th stock.

$$
\begin{equation*}
\frac{\Psi}{w}=\frac{P_{i}}{p_{i}}-1 \tag{14}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\mathrm{E} P_{i}=p_{i}(1+r \tau)+\lambda \operatorname{cor}\left(P_{i}, \Psi^{\star}\right) \sqrt{\tau \operatorname{var} P_{i}} \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda \triangleq \frac{\sqrt{\alpha^{\star} T \alpha^{\star}}}{\zeta} \tag{16}
\end{equation*}
$$

with dimensions $\mathrm{yr}^{-1 / 2}$ is termed the "market price of risk" and notably depends on neither the asset nor the investment horizon.

In particular, the expected value of the (simple) return on the i-th asset is

$$
\begin{equation*}
\bar{R}_{i} \triangleq r+\lambda \operatorname{cor}\left(P_{i}, \Psi^{\star}\right) \sqrt{\frac{\operatorname{var} P_{i}}{p_{i}^{2} \tau}} \tag{17}
\end{equation*}
$$

whereby

$$
\begin{equation*}
\mathrm{E} P_{i}=p_{i}\left(1+\bar{R}_{i} \tau\right) \tag{18}
\end{equation*}
$$

