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Cramér–Rao lower bound

The Cramér–Rao lower bound is a classic result in statistics. I provide below an outline of a proof in the
multi-parameter setting. See for example [1] chapter 8.

Consider an unbiased estimator θ̂(x) for an unknown parameter vector θ with likelihood fX(x) at sample
x.

0 = E
[
θ̂(X)− θ

]
=

∫ (
θ̂(x)− θ

)
fX(x) dx

If we take the (vector) derivative with respect to the parameters, and we are allowed to distribute it, we get

0 =

∫ (
θ̂(x)− θ

) ∂fX(x)

∂θ
dx− I

∫
fX(x) dx

or, with some manipulation,∫ ((
θ̂(x)− θ

)√
fX(x)

)(∂ log fX(x)

∂θ

√
fX(x)

)
dx = I

Consider any vectors a and b in parameter space. The previous result means∫ (
a′
(
θ̂(x)− θ

)√
fX(x)

)(∂ log fX(x)

∂θ

√
fX(x) b

)
dx = a′b

This can be thought of as an inner product in the Hilbert space L2, which means we can apply Cauchy-
Schwarz to get

a′
(∫ (

θ̂(x)− θ
)(

θ̂(x)− θ
)′
fX(x) dx

)
a

b′
(∫

∂ log fX(x)

∂θ′
∂ log fX(x)

∂θ
fX(x) dx

)
b ≥

(
a′b
)2

1



Fisher Information

Define the Fisher information to be

I(θ) , E

[
∂ log fX(X)

∂θ′
∂ log fX(X)

∂θ

]
= cov

[
∂ log fX(X)

∂θ′

]
= E

[
− ∂2

∂θ′ ∂θ
log fX(X)

]
if the log-likelihood is twice differentiable on its support in the last instance.

With b , I−1(θ) a, the previous result translates to(
a′ cov

[
θ̂(X)

]
a
) (
a′I−1(θ) a

)
≥
(
a′I−1(θ) a

)2
So we can conclude that

a′
(
cov

[
θ̂(X)

]
− I−1(θ)

)
a ≥ 0

for all vectors a.
This conforms with the definition of a positive semi-definite matrix, and can be written as

cov
[
θ̂(X)

]
≥ I−1(θ) (1)

Note that the Cramér–Rao lower bound is a special case of the Kullback inequality about the relative
entropy of one measure with respect to another.
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