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Implied Risk-Neutral Density

For a European call we have

c(t, T,K) = EQ [D(t, T ) (ST −K)+
∣∣Ft]

where D is the stochastic risk-free discount factor [2]. If innovations of the underlying are independent of
innovations in the risk-free interest rate (or otherwise under the forward measure), we have

d2c

dK2
= EQ [D(t, T )δ (ST −K)| Ft]

= P (t, T )fST |Ft(K)

where fST |Ft(·) is the risk-neutral probability density of the terminal value of the underlying and P (t, T ) is
the risk-free discount factor.

Since the risk-neutral expected value is just the forward value, we have

F (t, T ) , EQ [ST | Ft]

=
1

P (t, T )

∫ ∞
0

K
d2c

dK2
dK

=
1

P (t, T )

(
K
dc

dK
− c
)∣∣∣∣∞

K=0

=
c|K=0

P (t, T )
=
St −

∫ T
t P (t, T ′) dv(T ′)

P (t, T )

where v(·) is the cumulative cashflow stream from the underlying asset. To verify the assertion, note that
the net present value of the following stream is zero:

0 =

∫ T

t
P (t, T ′)

d

dT ′
(
−Stδ(T ′ − t) + v(T ′) + F (t, T )δ(T ′ − T )

)
dT ′

This is the definition of a forward, the fair price one could contract today to sell an asset at a future date.
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European-style payoffs

In general, the risk-neutral expected value of any function of the terminal value of the underlying h(·) is

EQ [h(ST )| Ft] =
1

P (t, T )

∫ ∞
0

h(K)
d2c

dK2
dK

= h (F (t, T )) +

∫ ∞
0

h′′(K)

(
c(t, T,K)

P (t, T )
− (F (t, T )−K)+

)
dK

where the latter equality uses integration by parts (twice) to transfer the second derivative from the call strike
structure to the payoff.

This provides a simple result for interpolating the value of any European-style derivative in terms of the
strike structure of the time value of calls1.

EQ [D(t, T )h(ST )| Ft] = P (t, T )h (F (t, T )) +

∫ ∞
0

h′′(K)
(
c(t, T,K)− P (t, T ) (F (t, T )−K)+

)
dK

It also gives us a means of analyzing the implied risk-neutral density of the future value of the underlying.

Implied variance

For example, with h(ST ) = (ST − F (t, T ))2 we find that

varQ [ST |Ft] = 2

∫ ∞
0

c(t, T,K)

P (t, T )
dK − F (t, T )2 (1)

It is conventional to express European option premia in terms of implied volatility, σB , based on the
Black formula.

c(t, T,K) = P (t, T )

(
F (t, T )Φ

(
log F (t,T )

K

σB(t, T,K)
√
τ(t, T )

+ 1
2σB(t, T,K)

√
τ(t, T )

)

−KΦ

(
log F (t,T )

K

σB(t, T,K)
√
τ(t, T )

− 1
2σB(t, T,K)

√
τ(t, T )

))

where τ(t, T ) is the option tenor expressed in years (e.g. business days divided by 252).
We will substitute this into (1) for the implied variance, but before we do so the form of the Black

equation suggests a change of variables to k = log K
F (t,T ) , which is termed the option “moneyness”.

varQ [ST |Ft] = F (t, T )2
(

2

∫ ∞
−∞

ekΦ

(
−k
ς(k)

+ 1
2 ς(k)

)
− e2kΦ

(
−k
ς(k)

− 1
2 ς(k)

)
dk − 1

)
(2)

where
ς(k) , σB

(
t, T, F (t, T )ek

)√
τ(t, T )

is the implied standard deviation of log returns expressed in terms of moneyness.
1Cf. [1]
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If the implied volatility is constant in strike, then the market conforms to the Back-Scholes log-normal
model. In this case, the integral in (2) can be evaluated using integration by parts and a change of variables
to yield the expected result,

varQ [ST |Ft] = F (t, T )2
(
eσ

2
B(t,T,·)τ(t,T ) − 1

)
In general, though, the implied volatility is not the same for all strike prices. In this case, the integral in

(2) may not be analytically tractable, but it is still numerically tractable.

SVI form

The results above depend on having options premia or implied volatility for a continuum of strike prices. In
fitting actual options data, the SVI (“stochastic volatility inspired”) functional form [3] can be useful.

ς(k) ,
√
c1 + c2k +

√
c3 + c4k + c5k2

where presumably the five coefficients depend on the value and expiration dates t and T .

Implied Characteristic Function

It can be useful to characterize the log-return rather than the horizon value of an asset. Using h(ST ) =(
ST

F (t,T )

)iz
we can derive the characteristic function of the excess2 log-return.

φQ
log

ST
F (t,T )

∣∣∣Ft(z) = 1 +

∫ ∞
0

iz(iz − 1)

K2

(
K

F (t, T )

)iz (c(t, T,K)

P (t, T )
− (F (t, T )−K)+

)
dK

= 1− (z2 + iz)

∫ ∞
−∞

eizk

(
c
(
t, T, F (t, T )ek

)
P (t, T )F (t, T )ek

−
(
e−k − 1

)+)
dk

If we are interested in a different horizon, and we are willing at make the assumption that increments
are additive, we can easily adjust the characteristic function

φQ
log

St+τ
F (t,t+τ)

∣∣∣Ft(z) ≈
(
φQ
log

ST
F (t,T )

∣∣∣Ft(z)
) τ

T−t

(3)
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