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Let us consider the expected shortfall index of satisfaction for a very simple portfolio: « shares in an
asset whose value today is p > 0 and whose horizon value P is lognormal.
Let us assume that the objective measure is profit; therefore in Meucci’s notation, we have
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where the invariant total return is normal X ~ N (u,X) with mean p and variance ¥ > 0. The index of

satisfaction is
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for confidence level ¢ < 1 in terms of the quantile function for the objective value.

1 Exact Version

In this simple situation, we can actually calculate a relatively simple expression for the value of index of
satisfaction. It will be useful to compare this below with the approximate value we get from the Cornish-
Fisher expansion.
We proceed to evaluate the exact version by considering the CDF of the objective.
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where ®(-) is the CDF of a standard normal.
The quantile, which is the inverse of the CDF, is therefore

Qu,(q) = ap (e““gnaﬁ‘b*l@ — 1)

So can proceed to evaluate the index of satisfaction.
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where the last line is achieved by the change of variable 2 = ®71(q) and ¢(2) = ®'(2) is the density of a
standard normal.
Since
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we have the final result,
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2 Short Horizon Approximation

For short horizons, the mean and variance of the total return invariant are small. To lowest order, the exact
result in (1) can be approximated by
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Let us spend a moment interpreting this. An investor will be more satisfied to be long (o > 0) if the asset
has a positive expected return (¢ > 0), and short (o < 0) if the asset has a negative expected return (¢ < 0).
In contrast, positive variance diminishes satisfaction for any non-zero position.

This all seems quite reasonable for a rational index of satisfaction.

3 Cornish-Fisher Approximation

It is unusual to have a simple analytic expression for the expected shortfall such as (1). This is why the
Cornish-Fisher expansion can be useful in practice. In order to use this, we need several low central moments
for the objective ¥,. In a Delta-Gamma setting, we can replace the objective by the quadratic
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hence O, = 0, A, = ap, and I',, = ap. Let us define a new objective to represent this approximation.
Za=ap (X + %XQ)
Is is straight-forward to work out that the first several central moments of this are
E(Ea) = ap (u+ 30% + 3%)

Sd(Za) = |alpVEy/ (1 4 p)? + 3%

1+p)?+ 4%
Sk (Ea) = BsgnavE— 5
(14 p)?+3%)

The third-order Cornish-Fisher expansion for expected shortfall in general is

S(a) ~ E (Za) + Sd (Za) (zl + 226_ Lk (Ea)>

with coefficients
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depending on the confidence level ¢ < 1!.

Putting this together, we get a third expression for the index of satisfaction.
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This result agrees with (2) to lowest order in p and X..

"The trick to these integrals is to realize that ¢’ (z) = —z¢(2).



4 Modeling Default

Our horizon asset value P is bounded below by zero in this set-up. But if this is a model for a financial
asset, we probably need to consider how the possibility of default would change the value of the expected
shortfall. An amendment to the market model to consider is

U =ap (YeX - 1)

where X ~ N(u, ) as before?, but now we add an independent default indicator Y ~ Bern(1 — h) for
default probability h.

%Since we cannot observe default events in the historical record for the total return, there is no reason to alter the objective model
for the invariant.



