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Problems

Solutions to these problems are due at the beginning of the next session, which is 5:30 PM on Wednesday,
September 10.

1. Post a document to the NetFiles dropbox (do not e-mail) telling me about your background and pro-
fessional goals, your interests, what you expect to learn from this module, and how you think about
the program so far. (1 point)

We saw that the entropy of a unit-variance normal random variable is log
√
2πe ≈ 1.42. The normal has

“normal” tails. In this problem, let’s look at the entropy of random variables with more extreme tails.
A uniform random variable U(θ) for parameter θ > 0 has a sample space (0, θ). The event space

consists of the Borel sets on (0, θ), and the probability of each is the normalized Lebesgue measure; e.g.,
P (a, b) = b−a

θ for 0 < a < b < θ.

2. What value of the parameter, θ?, corresponds to a unit variance? (2 points)

3. What is the entropy of the unit-variance U(θ?)? (3 points)

We can use the Chebychev inequality for a random variable X ,

P
{
(X − EX)2 > x2 varX

}
<

1

x2
∀ x > 1

to bound the distribution function for any symmetric random variable with a finite variance.

4. Based on this, what is an upper bound on the entropy for any symmetric, unit-variance random vari-
able? (4 points)

Solutions

Firstly, note that since entropy transforms in a simple fashion under affine (linear plus a constant) transfor-
mations,

HaX+b = log |a|+HX

for random variable X and constants a and b, it makes sense to limit our comparison to unit-dispersion
random variables (unit-variance in this case).
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Firstly, we need to determine the parameterization of a unit-variance uniform random variable. Let
U ∼ U(θ). Since

EU =

∫ θ

0
u
1

θ
du =

u2

2θ

∣∣∣∣θ
0

= 1
2θ

and

EU2 =

∫ θ

0
u2

1

θ
du =

u3

3θ

∣∣∣∣θ
0

= 1
3θ

2

the variance of U is varU = 1
3θ

2 −
(
1
2θ
)2

= 1
12θ

2. Therefore, for θ = θ? = 2
√
3, the variance is one.

In general, the entropy of a uniform random variable is

HU = −
∫ θ

0

(
log

1

θ

)
1

θ
du = log θ

so the entropy of a unit-variance uniform random variable is log 2
√
3 ≈ 1.24, or about 12% less than that of

the a unit-variance normal random variable.
Now, let’s consider the Chebyshev inequality for symmetric mean-zero unit-variance random variables

X .
P {|X| > x} < 1

x2
∀ x > 1

Since P {|X| > x} = P {X > x}+ P {X < −x} = 2P {X > x} = 2 (1− P {X < x}),

FX(x) > 1− 1

2x2
for x > 1

A similar argument with −x lead us to conclude that

FX(x) <
1

2x2
for x < −1

Let Z be the random variable that attains these bounds. Since FZ(·) must be non-decreasing,

FZ(z) =


1

2z2
z < −1

1
2 −1 ≤ z ≤ 1

1− 1
2z2

z > 1

and, differentiating, we get the density

fZ(z) =


−z−3 z < −1
0 −1 ≤ z ≤ 1

z−3 z > 1

Note that Z is not actually unit-variance—in fact it has infinite variance—but any symmetric unit-
variance random variable would have less mass in its tails than Z, and therefore lower entropy.

The entropy of Z is

HZ = −2
∫ ∞
1

log
(
z−3
) (
z−3
)
dz = 6

∫ ∞
1

z−3 log z dz =
3

2
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Family Entropy
uniform 1.24 + log σ
Gauss 1.42 + log σ
Chebychev < 1.50 + log σ

Table 1: Entropy of symmetric random variables with finite variance σ2.

where the integral can be done by parts (u = log z etc.). This is only about 6% higher than the entropy of
the unit-variance normal.

These results are summarized in Table 1.
One observation we can make is that the Gaussian random variable is actually fairly close to the upper

bound. There is not much room unless we are prepared to abandon the requirement of a finite variance1.

1Update: A student has since pointed out that the Gaussian is in fact provably the highest entropy random variable for a fixed
variance.
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