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Homework for Week 4

John Dodson

September 24, 2014

A solution to these problems is due at the beginning of the next session, which is 5:30 PM on Wednesday,
October 1.

Timeseries

An asset price timeseries is a set of ordered pairs,

{(timestamp ti, value pi) : i ∈ {0, 1, . . . , N}}

Without loss of generality, we can assume t0 < t1 < · · · < tN . Usually, we can also assume that the periods
between timestamps are regular.

Geometric Brownian motion

A classic model for the dynamics of an asset price (paying no dividends or coupons) is geometric Brownian
motion (GBM), which we can write as a stochastic differential equation dP = Pµdt+ Pσ dBt in terms of
a standard Brownian motion Bt and constants µ (“drift”) and σ > 0 (“volatility”); hence

P (t) = P (0)e

(
µ−1

2σ
2
)
t+σBt

Since (non-overlapping) increments of Bt (hence non-overlapping increments of logP ) are normal and
independent,

B(t)|Fs ∼ N (B(s), t− s) ∀ t > s ≥ 0

a likelihood function for the parameters µ and σ can be formed from a time series of observations of P .

Problems

Let us work with FB (Facebook) and GOOGL (Google) common equity1 daily closing price time series for
two years through September 24.

1. Evaluate the maximum likelihood estimate and Cramér-Rao lower bound for the standard error of the
estimate of the GBM parameters (µ, σ) of each. (8 points)

1Google split its public shares on March 27, 2014. The existing “class A” shares were assigned the new GOOGL ticker, while
the new “class C” shares were assigned the existing GOOG ticker (the “class B” shares remain unlisted).
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Kendall’s rank correlation for a sample ((x1,1, x1,2) , (x2,1, x2,2) , . . . , (xN,1, xN,2)) of a bivariate ran-
dom variable X is

τ̂1,2 ,

(
N

2

)−1 ∑
1≤i<j≤N

sgn ((xi,1 − xj,1) (xi,2 − xj,2))

where sgn(·) is the signum function, which evaluates to −1, 0, 1 according to the sign of the argument.

2. Assuming again that continuous daily returns are i.i.d., evaluate Kendall’s rank correlation for FB and
GOOGL. (1 point)

3. By method of moments, what is the corresponding elliptical copula pseudo-correlation estimate?
(1 point)

Technical Hint

In MATLAB, the principal routine in the core language for numerical optimization is fminsearch(). For
example, if you are trying to solve the optimization problem,

x? = arg min
x∈R2

(x1 + 1)2 + (x2 − 2)2

you can use calculus to conclude x? = (−1, 2)′. In MATLAB, you can code this as

>> x=fminsearch(@(x)(x(1)+1)ˆ2+(x(2)-2)ˆ2,[0 0])

x =

-1.0000 2.0000

Obviously, if you are seeking a local maximum rather than a local minimum, you can reverse the sign
of the objective function.

Solution

First we have to assemble our data.

>> raw=yahoo_prices({'FB','GOOGL'},'2012-09-21','2014-09-24'); % adjust start for weekend
>> tsc=resample(raw,raw.Time(˜isnan(raw.FB.Data))); % remove holidays

Note that I am using a timeseries function to remove non-trading days here.
Next we need to extract the log-returns.

>> ret.FB=log(tsc.FB.Data(2:end))-log(tsc.FB.Data(1:end-1));
>> ret.GOOGL=log(tsc.GOOGL.Data(2:end))-log(tsc.GOOGL.Data(1:end-1));

Let’s measure time in trading days, and let’s define

xi = log pi − log pi−1
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In these terms, the log-likelihood function for the GBM parameters is

L (µ, σ) = log
∏
i

1√
2πσ

e
−
(
xi−µ+

1
2σ

2
)2
/(2σ2)

= const.−
∑
i

((
xi − µ+ 1

2σ
2
)2

2σ2
+ log σ

)

You can code this as

>> f=@(mu,sigma,x)(x-mu+sigmaˆ2/2).ˆ2/(2*sigmaˆ2)+log(sigma);

>> theta.FB=fminsearch(@(theta)sum(f(theta(1),theta(2),ret.FB)),[0 0]);
>> theta.GOOGL=fminsearch(@(theta)sum(f(theta(1),theta(2),ret.GOOGL)),[0 0]);

For the next part, I am asking for the standard errors of the estimates. There are now two different kinds
of standard deviations here: the standard deviation of the random variable, σ, and the standard deviation of
the estimators, se µ̂ and se σ̂. Please do not get confused! The latter is a property of the sample. The former
is a property of the model. For example, as the sample size goes to infinity, the standard errors go to zero,
while this has no bearing on the standard deviation of the random variable.

There are several ways to approach this. You could note the underlying normality of the model and make
use of the results for the normal. It is relatively uncommon that there are analytical result available. Instead,
we will note that the Fisher information is the covariance of the gradient of the log of the joint density and
that

∂

∂µ
log fX|µ,σ(X) =

X − µ
σ2

+
1

2

∂

∂σ
log fX|µ,σ(X) =

(X − µ)2

σ3
− 1

σ
− σ
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We can use the sample of log-returns and the MLE parameter estimates to estimate this covariance.

>> Info.FB=cov((ret.FB-theta.FB(1))/theta.FB(2)ˆ2,...
(ret.FB-theta.FB(1)).ˆ2/theta.FB(2)ˆ3);

>> Info.GOOGL=cov((ret.GOOGL-theta.GOOGL(1))/theta.GOOGL(2)ˆ2,...
(ret.GOOGL-theta.GOOGL(1)).ˆ2/theta.GOOGL(2)ˆ3);

While not strictly true, we can assume here that the estimator is unbiased, so the (co)variance of the
estimator is bounded below by the inverse of the Fisher information of the sample.

>> N=length(ret.FB);
>> SE.FB=sqrt(diag(inv(N*Info.FB)));
>> SE.GOOGL=sqrt(diag(inv(N*Info.GOOGL)));

The results are summarized in Table 1.
Notice that the significance of our volatility estimates is much greater than the significance of our drift

estimates. In fact, our drift estimates are so weak that we cannot even be confident that the signs are correct!
This is typical, and it signifies a deep problem in the objective analysis of asset returns.
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ticker daily drift (µ) daily volatility (σ)
FB 0.003± 0.001 0.0282± 0.0003
GOOGL 0.0011± 0.0006 0.0137± 0.0001

Table 1: Geometric Brownian motion parameters to one significant digit of the standard error estimate.

For the last part, you are to consider a measure of dependence. Let me discuss the difference between
correlation and pseudo-correlation. If the joint model of the data were elliptical (e.g. bivariate normal), we
could estimate the copula parameter with an MLE ρ̂ in conjunction with the marginal parameters.

If we are not prepared to assume that the join model is elliptical, but we still want to characterize
the dependence structure with pair-wise parameters, we can use something like Kendall’s rank correlation
metric, which is based on matching moments of the distribution of concordances.

Elliptical copulas could be expressed directly in terms of pair-wise Kendall’s taus, but it is conventional
to express them in terms of pseudo-correlations,

ρ = sin π
2 τ

This is because psedo-correlation coincides with (Pearson’s) correlation for jointly elliptical models, and
elliptical copulas are a relatively new idea.

For the sample concordance measurement, we have to loop over pairs of dates.

pairs=0;conc=0;
for i=1:N-1

for j=i+1:N
pairs=pairs+1;
conc=conc+sign(ret.FB(i)-ret.FB(j))...

*sign(ret.GOOGL(i)-ret.GOOGL(j));
end

end
>> tau=conc/pairs

tau =

0.2767

>> rho=sin(tau*pi/2)

rho =

0.4211

That is, the Kendall’s rank-order correlation is about 0.28 and the corresponding elliptical pseudo-
correlation is about 0.42.

By the way, the Pearson’s correlation (based on an assumption of bivariate normality) is only about 0.28,
which would seem to be a significant underestimate compared to the pseudo-correlation.
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