Risk \& Asset Allocation (Spring) Homework for Week 1

John A. Dodson

January 21, 2015

Introduction

Treasury nominal ${ }^{1}$ bonds pay coupons at a fixed rate in equal installments twice per year. The usual approach to valuing bonds is based on the net present value of these cashflows. The basis for this is a discounting function, which could be arbitrarily complicated. Faced with estimation, a dimension reduction is called for. There are several popular functional forms for the discounting function. We will consider the following:

$$
\begin{equation*}
d(T-t ; \beta)=\exp \left\{-\beta_{2}(T-t)+\beta_{3} \frac{1-e^{-\beta_{1}(T-t)}}{\beta_{1}}-\left(\beta_{4} \frac{1-e^{-\beta_{1}(T-t)}}{\beta_{1}}\right)^{2}\right\} \tag{1}
\end{equation*}
$$

If a new par bond with maturity date T has yield (equal to coupon) $y(t, T)$ on date t, then

$$
\begin{equation*}
1=d(T-t ; \beta(t))+\frac{1}{2} y(t, T) \sum_{i=1}^{2(T-t)} d(i / 2 ; \beta(t)) \tag{2}
\end{equation*}
$$

can be used to define-or at least to fit—parameters $\beta(t)$ to this model. One approach to this is (non-linear) least-squares

$$
\hat{\beta}(t) \triangleq \arg \min _{\beta} \sum_{j}\left(\frac{1-d\left(T_{j}-t ; \beta\right)}{\frac{1}{2} \sum_{i=1}^{2\left(T_{j}-t\right)} d(i / 2 ; \beta)}-y\left(t, T_{j}\right)\right)^{2}
$$

where j indexes the yields to be fit.

Problem

A solution to this problem is due at the beginning of the next session, which is 5:30 PM on Wednesday, January 28.

1. Using the Federal Reserve's H. 15 statistical release, available here:
```
http://www.federalreserve.gov/releases/h15/current/default.htm
```

fit parameters $\hat{\beta}(t)$ to $T_{j}-t=1-, 2-, 3-, 5-, 7-, 10-, 20-$, and 30 -year constant maturity Treasury nominal yields $y\left(t, T_{j}\right)$ for $t=$ January 14. Keep in mind that these yields are quoted in percent. (6 points)

[^0]2. Make a table of the yields you used and the fitted yields you got with the parameters from above (based on (2)). If you are successful, these should be within about 5 basis points (5.E-4/yr) for each maturity. (4 points)

Solution

Below is the MATLAB I wrote to identify the parameters for the January 14 nominal Treasury yields.

```
>> tenor=[ll 2 3 5 7 10 20 30]; % constant maturity Treasuries tenors
>> yield=[0.18 0.51 0.83 1.33 1.62 1.86 2. 20 2.47]/100; % from Fed H.15 for 2015/01/14
>> disc=@ (T,b) exp (-b (2)*T+b (3)* (1-exp (-b (1)*T))/b (1)-(b (4)* (1-exp (-b (1)*T))/b (1)).^2);
>> yld=@(T,b) arrayfun(@(T) 2*(1-disc(T,b))/sum(disc(.5:.5:T,b)),T);
>> obj=@(b) sum(arrayfun(@(T,cpn)(yld(T,b)-cpn)^2,tenor,yield));
>> b0=fminsearch(obj,[.05 .05 .05 .05]);
```

The results I got for the parameters are here

Table 1: Least-squares (yield) parameters for January 14.

β_{1}	$0.2136 / \mathrm{yr}$
β_{2}	$0.0283 / \mathrm{yr}$
β_{3}	$0.0318 / \mathrm{yr}$
β_{4}	$0.0473 / \mathrm{yr}$

and the fitted yields are here

Table 2: Fit and residuals for January 14.

tenor	data	fit	error
1 yr	$0.0018 / \mathrm{yr}$	$0.0016 / \mathrm{yr}$	$-0.0002 / \mathrm{yr}$
2 yr	$0.0051 / \mathrm{yr}$	$0.0055 / \mathrm{yr}$	$+0.0003 / \mathrm{yr}$
3 yr	$0.0083 / \mathrm{yr}$	$0.0085 / \mathrm{yr}$	$+0.0002 / \mathrm{yr}$
5 yr	$0.0133 / \mathrm{yr}$	$0.0130 / \mathrm{yr}$	$-0.0003 / \mathrm{yr}$
7 yr	$0.0162 / \mathrm{yr}$	$0.0159 / \mathrm{yr}$	$-0.0003 / \mathrm{yr}$
10 yr	$0.0186 / \mathrm{yr}$	$0.0187 / \mathrm{yr}$	$+0.0001 / \mathrm{yr}$
20 yr	$0.0220 / \mathrm{yr}$	$0.0227 / \mathrm{yr}$	$+0.0007 / \mathrm{yr}$
30 yr	$0.0247 / \mathrm{yr}$	$0.0242 / \mathrm{yr}$	$-0.0005 / \mathrm{yr}$

In order to plot a yield curve, I need to invert (2). I also need to extend its range to non-integer tenors. The usual way to do this is to introduce the concept of "clean price", whereby "accrued interest" on the current coupon is excluded. The net present value of a par bond is then par plus accrued.

$$
\begin{equation*}
1+y(t, T)\left(\frac{1}{2}\lceil 2(T-t)\rceil-T+t\right)=d(T-t ; \beta(t))+\frac{1}{2} y(t, T) \sum_{i=0}^{\lceil 2(T-t)\rceil-1} d(T-i / 2-t ; \beta(t)) \tag{2’}
\end{equation*}
$$

$y(t, T)$ defined implicitly here is continuous in T (as long as $d(T-t)$ is for $T>t$ and $\lim _{t \nearrow T} d(T-t)=1$) because both sides gap by $\frac{1}{2} y(t, T)$ when $T-t$ crosses a half-integer, in accordance with a coupon payment.

```
>> par_curve=@(T) arrayfun(@(T) (1-disc(T,b0))...
    /(T-ceil(2*T)/2+sum(disc(T-(0:ceil(2*T)-1)/2,b0))/2),T); % includes accrued
>> fplot(par_curve,[0 30]); hold on; plot(tenor,yield,'+'); hold off;
```

Figure 1: Nominal Treasuries par curve for January 14, 2015

Discussion

While described as strictly empirical, this model has a basis in theory. If the coefficients are observed to have a certain dynamic, namely $\beta_{1}, \beta_{2}, \beta_{4}$ constant and $\beta_{3}(t)$ an Ornstein-Uhlenbeck process, this model is equivalent to the Vasicek (1977) single-factor gaussian short-rate model:

$$
d(T-t)=\mathbb{E}^{\mathbb{Q}}\left[e^{-\int_{t}^{T} r_{s} d s} \mid \mathcal{F}_{t}\right]
$$

where

$$
\begin{aligned}
d r_{t} & =\left(2 \beta_{4}^{2}+\beta_{1} \beta_{2}-\beta_{1} r_{t}\right) d t+2 \beta_{4} \sqrt{\beta_{1}} d W \\
r_{t} & =\beta_{2}-\beta_{3}(t)
\end{aligned}
$$

with W a standard brownian motion under \mathbb{Q}.

[^0]: " "nominal" in contrast to "discount", "inflation-protected", or "registered interest and principal"

