Risk \& Asset Allocation (Spring) Homework for Week 2

John A. Dodson

January 28, 2015

A solution to this problem is due at the beginning of the next session, which is 5:30 PM on February 4.

Problem

Say you have $N=500$ historical return observations for some asset. Assume they are i.i.d. (perhaps a GARCH model has been fit). You wish to model the invariant with a normal.

- The sample mean of the data is -0.0027 and the sample variance is 0.00022 .
- Your prior on this return is that the mean is +0.005 and the variance is 0.0002 .

1. What is the standard error of the mean estimate based on the sample? ($\mathbf{3}$ points)
2. How much pseudo-data do you need to add (this is $\lambda_{0}=\nu_{0}$ in the notation of the lecture) in order for the posterior standard deviation of the mean to be no more than 0.0005 ? ($\mathbf{5}$ points)
(Note: the marginal posterior for the mean is a Student's $-t$ with variance

$$
\operatorname{var} \mu=\frac{\sigma_{N}^{2}}{\lambda_{N}} \frac{\nu_{N}}{\nu_{N}-2}
$$

in the notation of the lecture.)
3. What is the point estimate of the posterior mean? (2 points)

Solution

From last semester, we know the the standard error of the mean of a sample from $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ is

$$
\sqrt{\operatorname{var} \hat{\mu}}=\sqrt{\frac{\sigma^{2}}{N}}
$$

Using the sample variance in place of σ^{2}, we get that the standard error of the mean is $\sqrt{0.00022 / 500} \approx$ 0.00066 .

Now we turn to calibrating the conjugate prior hyper-parameters to improve this standard error. We are given $\mu_{0}=0.005$ and $\sigma_{0}^{2}=0.0002$ directly. Let's let $\lambda_{0}=\nu_{0} \triangleq N^{\prime}$ be defined implicitly as the smallest integer solution to

$$
\begin{equation*}
\frac{\sigma_{N}^{2}}{\lambda_{N}} \frac{\nu_{N}}{\nu_{N}-2} \leq 0.0005^{2} \tag{1}
\end{equation*}
$$

where $\lambda_{N}=\nu_{N}=N^{\prime}+N$ and

$$
\begin{aligned}
\mu_{N} & =\frac{N^{\prime} \mu_{0}+N \hat{\mu}}{N^{\prime}+N} \\
\sigma_{N}^{2} & =\frac{N^{\prime}\left(\sigma_{0}^{2}+\mu_{0}^{2}\right)+N\left(\hat{\mu}^{2}+\hat{\sigma}^{2}\right)}{N^{\prime}+N}-\mu_{N}^{2}
\end{aligned}
$$

with the summary statistics $\hat{\mu}=-0.0027$ and $\hat{\sigma}^{2}=0.00022 \times(N-1) / N$.
Substituting these definitions into (1) gives a cubic inequality in N^{\prime}, which evaluates to

$$
N^{\prime}>403.9
$$

whose smallest integer solution is $N^{\prime}=404$.
There is an exact solution for this, but I used the following MATLAB script:

```
>> N=500;
>> t1=-2.7E-3*N;
>>t2=N*(2.2E-4* (N-1)/N+(t1/N)^2); % note adaption for unbiased sample variance
>> mu0=5E-3;
>> sigmaSqr0=2E-4;
>> nuN=@(nu0) nu0+N;
>> muN=@(nu0)(nu0*mu0+t1)/nuN(nu0);
>> sigmaSqrN=@(nu0)(nu0*sigmaSqr0+nu0*mu0^2+t2-nuN(nu0)*muN(nu0)^2)/nuN(nu0);
>> fzero(@(nu0) sigmaSqrN(nu0)/(nuN(nu0)-2)-5E-4^2,N)
ans=
    403.8990
>> muN(404)
ans=
    7.4114e-04
```

where in the last step we have used the result that

$$
\mathrm{E} \mu=\mu_{N} \approx+0.0007
$$

The Student's- t distribution is symmetric, so the mean is also the mode, in case we wanted to use the maximum likelihood point estimator instead.

