Risk \& Asset Allocation (Spring) Homework for Week 4

John A. Dodson

February 11, 2015

A solution to this problem is due at the beginning of the next session, which is 5:30 PM on Wednesday, February 18.

The goal of this problem is to work through the two-step approach to determine the optimal portfolio in an analytic setting.

Assume a single affine constraint (e.g. the wealth constraint), an investor objective linear in the market vector (e.g. wealth or profit), and a sufficiently short analysis horizon such that the skewness of the market vector is negligible.

For an objective defined by $\Psi_{\alpha}=\alpha^{\prime} M$ and an affine constraint defined by $d^{\prime} \alpha=c>0$, the analytic solution to the optimal mean-variance portfolio satisfies

$$
\begin{equation*}
\alpha(\beta)=(1-\beta) \alpha_{M V}+\beta \alpha_{S R} \tag{1}
\end{equation*}
$$

for $\beta \geq 0$, where

$$
\begin{aligned}
\alpha_{M V} & =\frac{c(\operatorname{cov} M)^{-1} d}{d^{\prime}(\operatorname{cov} M)^{-1} d} \\
\alpha_{S R} & =\frac{c(\operatorname{cov} M)^{-1} \mathrm{E} M}{d^{\prime}(\operatorname{cov} M)^{-1} \mathrm{E} M}
\end{aligned}
$$

This is step one. Step two is to determine the level of β that maximizes the investor's index of satisfaction, which we will take to be the Cornish-Fisher expansion of the 95% expected shortfall.

$$
\begin{equation*}
\mathcal{S}(\alpha)=\mathrm{E} \Psi_{\alpha}+\sqrt{\operatorname{var} \Psi_{\alpha}}\left(\mathcal{I}\left[\phi \Phi^{-1}\right]+\frac{1}{6}\left(\mathcal{I}\left[\phi\left(\Phi^{-1}\right)^{2}\right]-1\right) \operatorname{sk} \Psi_{\alpha}\right) \tag{2}
\end{equation*}
$$

where Φ is the CDF of a standard normal random variable and ϕ is the coherent spectrum for $\mathrm{ES}_{0.95}$.
Note that

$$
\mathcal{I}\left[\phi \Phi^{-1}\right]=\int_{0}^{0.05} \frac{\sqrt{2} \operatorname{erf}^{-1}(2 p-1)}{0.05} d p \approx-2.0627 \ldots
$$

Problem

1. Solve

$$
\beta^{\star}=\arg \max _{\beta \geq 0} \mathcal{S}(\alpha(\beta))
$$

Hint: $\Psi_{\alpha_{M V}}$ and $\Psi_{\alpha_{S R}}-\Psi_{\alpha_{M V}}$ are uncorrelated. (6 points)
2. Under what conditions is β^{\star} finite? (4 points)

Solution

Let us assign $z_{0.95}=2.0627 \cdots$. The satisfaction is

$$
\mathcal{S}(\alpha)=\alpha^{\prime} \mathrm{E} M-z_{0.95} \sqrt{\alpha^{\prime}(\operatorname{cov} M) \alpha}
$$

Substituting in (1), we get that the optimal value for β is

$$
\begin{aligned}
& \beta^{*}=\arg \max _{\beta \geq 0}\left(\alpha_{M V}^{\prime}+\beta\left(\alpha_{S R}^{\prime}-\alpha_{M V}^{\prime}\right)\right) \mathrm{E} M \\
&-z_{0.95} \sqrt{\left(\alpha_{M V}^{\prime}+\beta\left(\alpha_{S R}^{\prime}-\alpha_{M V}^{\prime}\right)\right)(\operatorname{cov} M)\left(\alpha_{M V}+\beta\left(\alpha_{S R}-\alpha_{M V}\right)\right)}
\end{aligned}
$$

Expressing this in terms of the moments of $\Psi_{\alpha_{S R}}$ and $\Psi_{\alpha_{M V}}$, and making use of the hint (and dropping the constant), this is the same as

$$
\beta^{*}=\arg \max _{\beta \geq 0} \beta \mathrm{E}\left(\Psi_{\alpha_{S R}}-\Psi_{\alpha_{M V}}\right)-z_{0.95} \sqrt{\operatorname{var} \Psi_{\alpha_{M V}}+\beta^{2} \operatorname{var}\left(\Psi_{\alpha_{S R}}-\Psi_{\alpha_{M V}}\right)}
$$

It is convenient at this stage to introduce the "information ratio",

$$
\begin{equation*}
\gamma \triangleq \frac{\mathrm{E}\left(\Psi_{\alpha_{S R}}-\Psi_{\alpha_{M V}}\right)}{\sqrt{\operatorname{var}\left(\Psi_{\alpha_{S R}}-\Psi_{\alpha_{M V}}\right)}} \tag{3}
\end{equation*}
$$

Factoring out a (positive) constant, we get

$$
\begin{equation*}
\beta^{*}=\arg \max _{\beta \geq 0} \gamma \beta-z_{0.95} \sqrt{\frac{\operatorname{var} \Psi_{\alpha_{M V}}}{\operatorname{var}\left(\Psi_{\alpha_{S R}}-\Psi_{\alpha_{M V}}\right)}+\beta^{2}} \tag{4}
\end{equation*}
$$

Notice at if $\gamma \geq z_{0.95}$, the objective of the maximization above becomes arbitrarily large as $\beta \rightarrow \infty$. Therefore there is no finite solution for the optimal portfolio if the satisfaction confidence level is too low. Also notice that if $\gamma \leq 0$, i.e. if the SR portfolio is not expected to out-perform the MV portfolio, the objective is strictly decreasing in β, so the optimal solution is $\alpha^{\star}=\alpha_{M V}$. For $0<\gamma<z_{0.95}$, solving (4) is an elementary calculus problem.

In summary,

$$
\beta^{\star}= \begin{cases}0 & \gamma \leq 0 \tag{5}\\ \sqrt{\frac{\operatorname{var} \Psi_{\alpha_{M V}}}{\operatorname{var}\left(\Psi_{\alpha_{S R}}-\Psi_{\alpha_{M V}}\right)} \frac{1}{\left(\frac{z_{0.95}}{\gamma}\right)^{2}-1}} & 0<\gamma<z_{0.95} \\ +\infty & \gamma \geq z_{0.95}\end{cases}
$$

Appendix: First-order condition

We are interested in the maximum of a real function of a single real variable of the form

$$
f: x \mapsto f(x)=A x-\sqrt{x^{2}+B}
$$

for constants $0<A<1, B \geq 0$ in the domain $x \geq 0$.
The first-order condition for a local maximum is

$$
0=f^{\prime}\left(x^{\star}\right)=A-\frac{x^{\star}}{\sqrt{\left(x^{\star}\right)^{2}+B}}
$$

Since A and x^{\star} are positive, if there is a solution, then

$$
\begin{aligned}
\sqrt{\left(x^{\star}\right)^{2}+B} & =\frac{x^{\star}}{A} \\
\left(x^{\star}\right)^{2}+B & =\frac{\left(x^{\star}\right)^{2}}{A^{2}} \\
B & =\left(x^{\star}\right)^{2}\left(\frac{1}{A^{2}}-1\right)
\end{aligned}
$$

hence

$$
x^{\star}=\sqrt{\frac{B}{\frac{1}{A^{2}}-1}}
$$

Note that x^{\star} is increasing in both A and B and $x^{\star}=0$ if either $A \rightarrow 0$ or $B=0$.

