Risk & Asset Allocation (Spring) Homework for Week 5

John A. Dodson

February 18, 2015

A solution to this problem is due at the beginning of the last(!) session, which is 5:30 PM on Wednesday, February 25.

Consider a broad investment universe and a normal market vector. Assume: all initial asset prices are one; under the objective probability measure each pair-wise correlation is 0.6; and each component's mean and variance is +0.01 and $(0.1)^2$ respectively.

The manager's subjective probability measure is based on a view with confidence 0.3 that one particular market vector component (e.g. the first) will turn out to be +0.05.

- What is the mean and variance of that component under the Black-Litterman subjective probability measure? (2 points)
- Under the manager's subjective probability measure, what fraction of the SR portfolio's initial value should be invested in this component? (8 points)
- Express the answers exactly in terms of the common marginal mean μ₀ ∈ ℝ, variance σ₀² > 0, and (Gaussian) copula parameter 0 < ρ < 1 characterizing the objective probability measure, and the view component v₁ ∈ ℝ and confidence 0 < c < 1. (2 points)

Solution

The picks matrix is simply

$$P = \begin{pmatrix} 1 & 0 & 0 & \cdots \end{pmatrix}$$

So $P\Sigma P'$ is just the scalar $[\Sigma]_{11}=\sigma_0^2$ and

$$\Sigma P' = \begin{pmatrix} \sigma_0^2 \\ \sigma_0^2 \rho \\ \sigma_0^2 \rho \\ \vdots \end{pmatrix}$$

The Black-Litterman market vector mean is

$$\mu_{BL} = \mu + c\Sigma P' \left(P\Sigma P' \right)^{-1} \left(v - P\mu \right) = \begin{pmatrix} (1-c)\mu_0 + cv_1 \\ (1-c\rho)\mu_0 + c\rho v_1 \\ (1-c\rho)\mu_0 + c\rho v_1 \\ \vdots \end{pmatrix}$$
(1)

Notice that the marginal variances factor out.

• To answer the first question, we see that $[\mu_{BL}]_1 = (1-c) [\mu]_1 + cv_1 = +0.022$

To evaluate the α_{SR} portfolio for the second question, we need first to evaluate

$$\Sigma_{BL} = \Sigma - c\Sigma P' \left(P\Sigma P' \right)^{-1} P\Sigma$$

Since Σ is symmetric, $\Sigma P' = (P\Sigma)'$. Thus we can arrive at

$$\Sigma_{BL} = \sigma_0^2 \begin{pmatrix} 1 - c & \rho - c\rho & \rho - c\rho & \cdots \\ \rho - c\rho & 1 - c\rho^2 & \rho - c\rho^2 & \cdots \\ \rho - c\rho & \rho - c\rho^2 & 1 - c\rho^2 \\ \vdots & \vdots & \ddots \end{pmatrix}$$

• In particular, $[\Sigma_{BL}]_{11} = (1-c) [\Sigma]_{11} = 0.007$

The inverse of this is not necessarily apparent, but turns out to be

$$\Sigma_{BL}^{-1} = \frac{1}{\sigma_0^2(1-\rho)} \begin{pmatrix} \frac{1-\rho}{1-c} + \frac{(n-1)\rho^2}{1+(n-1)\rho} & -\frac{\rho}{1+(n-1)\rho} & -\frac{\rho}{1+(n-1)\rho} & \cdots \\ -\frac{\rho}{1+(n-1)\rho} & 1 - \frac{\rho}{1+(n-1)\rho} & -\frac{\rho}{1+(n-1)\rho} & \cdots \\ -\frac{\rho}{1+(n-1)\rho} & -\frac{\rho}{1+(n-1)\rho} & 1 - \frac{\rho}{1+(n-1)\rho} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix}$$
(2)

where $n = \dim M$ is the number of assets in the investment universe. The proof of this comes from multiplying out Σ_{BL}^{-1} and Σ_{BL} .

Assuming the initial price vector p is one (or at least proportional to one), the SR portfolio allocation is proportional to

$$\alpha_{SR} \propto \Sigma_{BL}^{-1} \mu_{BL} = \frac{1}{\sigma_0^2} \begin{pmatrix} v_1 \frac{c}{1-c} + \frac{\mu_0}{1+(n-1)\rho} \\ \frac{\mu_0}{1+(n-1)\rho} \\ \frac{\mu_0}{1+(n-1)\rho} \\ \vdots \end{pmatrix}$$

The fraction of the initial value of this portfolio allocated to the first asset is

$$\frac{[p]_1 [\alpha_{SR}]_1}{p' \alpha_{SR}} = \frac{v_1 \frac{c}{1-c} + \frac{\mu_0}{1+(n-1)\rho}}{v_1 \frac{c}{1-c} + \frac{n\mu_0}{1+(n-1)\rho}}$$

For a sufficiently broad investment universe, this limits to

$$\lim_{n \to \infty} \frac{[p]_1 [\alpha_{SR}]_1}{p' \alpha_{SR}} = \frac{1}{1 + \frac{1 - c}{c} \frac{\mu_0}{v_1} \frac{1}{\rho}}$$
(3)

• For the parameters given in the problem, this limit evaluates to about **56%**. The other 44% should be allocated equally to the remaining assets.

You should get a numerical value close to the exact result for any model with at least twenty assets in the investment universe.