Risk \& Asset Allocation (Spring) Homework for Week 5

John A. Dodson

February 18, 2015

A solution to this problem is due at the beginning of the last(!) session, which is 5:30 PM on Wednesday, February 25.

Consider a broad investment universe and a normal market vector. Assume: all initial asset prices are one; under the objective probability measure each pair-wise correlation is 0.6 ; and each component's mean and variance is +0.01 and $(0.1)^{2}$ respectively.

The manager's subjective probability measure is based on a view with confidence 0.3 that one particular market vector component (e.g. the first) will turn out to be +0.05 .

- What is the mean and variance of that component under the Black-Litterman subjective probability measure? (2 points)
- Under the manager's subjective probability measure, what fraction of the SR portfolio's initial value should be invested in this component? (8 points)
- Express the answers exactly in terms of the common marginal mean $\mu_{0} \in \mathbb{R}$, variance $\sigma_{0}^{2}>0$, and (Gaussian) copula parameter $0<\rho<1$ characterizing the objective probability measure, and the view component $v_{1} \in \mathbb{R}$ and confidence $0<c<1$. (2 points)

Solution

The picks matrix is simply

$$
P=\left(\begin{array}{llll}
1 & 0 & 0 & \cdots
\end{array}\right)
$$

So $P \Sigma P^{\prime}$ is just the scalar $[\Sigma]_{11}=\sigma_{0}^{2}$ and

$$
\Sigma P^{\prime}=\left(\begin{array}{c}
\sigma_{0}^{2} \\
\sigma_{0}^{2} \rho \\
\sigma_{0}^{2} \rho \\
\vdots
\end{array}\right)
$$

The Black-Litterman market vector mean is

$$
\mu_{B L}=\mu+c \Sigma P^{\prime}\left(P \Sigma P^{\prime}\right)^{-1}(v-P \mu)=\left(\begin{array}{c}
(1-c) \mu_{0}+c v_{1} \tag{1}\\
(1-c \rho) \mu_{0}+c \rho v_{1} \\
(1-c \rho) \mu_{0}+c \rho v_{1} \\
\vdots
\end{array}\right)
$$

Notice that the marginal variances factor out.

- To answer the first question, we see that $\left[\mu_{B L}\right]_{1}=(1-c)[\mu]_{1}+c v_{1}=+\mathbf{0 . 0 2 2}$

To evaluate the $\alpha_{S R}$ portfolio for the second question, we need first to evaluate

$$
\Sigma_{B L}=\Sigma-c \Sigma P^{\prime}\left(P \Sigma P^{\prime}\right)^{-1} P \Sigma
$$

Since Σ is symmetric, $\Sigma P^{\prime}=(P \Sigma)^{\prime}$. Thus we can arrive at

$$
\Sigma_{B L}=\sigma_{0}^{2}\left(\begin{array}{cccc}
1-c & \rho-c \rho & \rho-c \rho & \cdots \\
\rho-c \rho & 1-c \rho^{2} & \rho-c \rho^{2} & \cdots \\
\rho-c \rho & \rho-c \rho^{2} & 1-c \rho^{2} & \\
\vdots & \vdots & & \ddots
\end{array}\right)
$$

- In particular, $\left[\Sigma_{B L}\right]_{11}=(1-c)[\Sigma]_{11}=\mathbf{0 . 0 0 7}$

The inverse of this is not necessarily apparent, but turns out to be

$$
\Sigma_{B L}^{-1}=\frac{1}{\sigma_{0}^{2}(1-\rho)}\left(\begin{array}{cccc}
\frac{1-\rho}{1-c}+\frac{(n-1) \rho^{2}}{1+(n-1) \rho} & -\frac{\rho}{1+(n-1) \rho} & -\frac{\rho}{1+(n-1) \rho} & \cdots \tag{2}\\
-\frac{\rho}{1+(n-1) \rho} & 1-\frac{\rho}{1+(n-1) \rho} & -\frac{\rho}{1+(n-1) \rho} & \cdots \\
-\frac{\rho}{1+(n-1) \rho} & -\frac{\rho}{1+(n-1) \rho} & 1-\frac{\rho}{1+(n-1) \rho} & \\
\vdots & \vdots & & \ddots
\end{array}\right)
$$

where $n=\operatorname{dim} M$ is the number of assets in the investment universe. The proof of this comes from multiplying out $\Sigma_{B L}^{-1}$ and $\Sigma_{B L}$.

Assuming the initial price vector p is one (or at least proportional to one), the SR portfolio allocation is proportional to

$$
\alpha_{S R} \propto \Sigma_{B L}^{-1} \mu_{B L}=\frac{1}{\sigma_{0}^{2}}\left(\begin{array}{c}
v_{1} \frac{c}{1-c}+\frac{\mu_{0}}{1+(n-1) \rho} \\
\frac{\mu_{0}}{1+(n-1) \rho} \\
\frac{\mu_{0}}{1+(n-1) \rho} \\
\vdots
\end{array}\right)
$$

The fraction of the initial value of this portfolio allocated to the first asset is

$$
\frac{[p]_{1}\left[\alpha_{S R}\right]_{1}}{p^{\prime} \alpha_{S R}}=\frac{v_{1} \frac{c}{1-c}+\frac{\mu_{0}}{1+(n-1) \rho}}{v_{1} \frac{c}{1-c}+\frac{n \mu_{0}}{1+(n-1) \rho}}
$$

For a sufficiently broad investment universe, this limits to

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{[p]_{1}\left[\alpha_{S R}\right]_{1}}{p^{\prime} \alpha_{S R}}=\frac{1}{1+\frac{1-c}{c} \frac{\mu_{0}}{v_{1}} \frac{1}{\rho}} \tag{3}
\end{equation*}
$$

- For the parameters given in the problem, this limit evaluates to about $\mathbf{5 6 \%}$. The other 44% should be allocated equally to the remaining assets.

You should get a numerical value close to the exact result for any model with at least twenty assets in the investment universe.

