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Cramér-Rao lower bound

The Cramér—Rao lower bound is a classic result in statistics. I provide below an outline of a proof in the
multi-parameter setting. See for example [1] chapter 8.
Consider an unbiased estimator 6 () for an unknown parameter vector 6 with likelihood fx (x) at sample
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If we take the (vector) derivative with respect to the parameters, and we are allowed to distribute it, we get
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or, with some manipulation,
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Consider any vectors a and b in parameter space. The previous result means
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This can be thought of as an inner product in the Hilbert space L?, which means we can apply Cauchy-
Schwarz to get
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Fisher Information

Define the Fisher information to be
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if the log-likelihood is twice differentiable on its support in the last instance.
With b £ T-1(6) a, the previous result translates to
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So we can conclude that R
o (cov [e(X)} - 1—1(9)) a>0

for all vectors a.
This conforms with the definition of a positive semi-definite matrix, and can be written as

cov [e(X)] >771(9) 1)

Note that the Cramér—Rao lower bound is a special case of the Kullback inequality about the relative
entropy of one measure with respect to another.
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