
Quantitative Risk Management
Fall Assignment
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October 8, 2015

This assignment is not a regular homework. It is worth half of the module grade
for the fall term. Please share your solution with me through Google Drive before the
beginning of the classroom session on Wednesday, October 21.

Your solution should include source code for programs and instructions for how
to run them with the software available on Math Department computers, for example
‘shelby’ in VinH 314. I recommend you use tar or zip if you will be submitting
several files.

I expect you to work alone and cite your sources. Please remind yourself of the
University’s definition of scholastic dishonesty.

Problems
This problem will be based on the timeseries of daily log-returns (adjusted for splits
and dividends) of the S&P 500 index, ticker ^GSPC, for two years up to October 14,
2015.

An important variant of GARCH for equity factors is the “leveraged” model of
Glosten, Jagannathan, and Runkle (at the University of Minnesota!) in 1993. We can
parameterize this as

σ2
t = α0 + α1 (εt−1 + δ |εt−1|)2 + β1σ

2
t−1

for |δ| < 1. Existence of an unconditional variance requires α1

(
1 + δ2

)
+ β1 < 1.

The point of this form is that there are two versions of the α1 ARCH term: one
in reaction to ups and one in reaction to downs. δ < 0 expressed the leverage phe-
nomenon.

1. Estimate the values of the parameters of a leveraged GARCH(1,1) process with
NRIG residuals for the log-returns of the index. (30 points)

2. Simulate the level of the index at the close of October 21, 2015. (30 points)

3. Estimate the 99% value-at-risk and expected shortfall on a long position in the
index using the simulations as an empirical loss distribution. (10 points)

N.B.: I will provide some assistance in the form of pseudo-code and a MATLAB
M-file function for simulating NRIG variates.
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Grading Rubric
Thirty out of one hundred points will be based on the follow criteria:

• You follow the instructions. (5 points)

• I can reproduce your results with the code and documentation you provide.
(10 points)

• You include adequate citations. (10 points)

• Your write-up is clear and professional. (5 points)

Solution
The S&P Index had daily returns less than -2% on eleven days and positive returns
greater than 2% on five days in the two years to October 14, 2015 (505 daily log-
returns). This would seem to suggest that negative residuals are scaled somewhat more
than positive residuals, and we see that in the model fit in Table 1.

α̂0 0.433× 10−5

β̂1 0.738
α̂1 0.110

δ̂ −1.00
ĝ 4.23

Table 1: MLE model parameter fits. The log-likelihood was -3.53 nats per observation.

As we have seen before, the intercept (α0) is essentially zero and the GARCH terms
(β1) dominate the ARCH terms. We also see somewhat fat tails in the residuals, with
the fitted NRIG having an excess kurtosis of about +0.68 (relative to the Gaussian).
Interestingly, we also see that the asymmetry term δ is floored. This means that the
ARCH contribution for a positive innovations is effectively zero, while the ARCH
contribution for negative innovations is a sizable 0.438 (4α1).

It is worth noting that the market declined by about 12% over six consecutive ses-
sions in late August, followed immediately by the largest positive return in the period.
This sequence seems to have heavily influenced the fit.

Let T denote October 14, 2015 in units of trading days. The MLE fit gives

forecast σ̂2
T+1 4.22× 10−5

unconditional σ̂2 10.1× 10−5

so it seems that volatility is relatively low at the end of the period but is expected to
rise.

One final observation about the fit is that the sample variance of the log-returns is
6.76 × 10−5, which is somewhat different from the unconditional variance estimate
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based on the MLE here (without variance targeting), so variance targeting may give
somewhat different results.

We are interested in the distribution of the index five sessions after the last obser-
vation. Since our model is not based on i.i.d. innovations, we need to use Monte Carlo
simulation. I implemented this in the following MATLAB script.

%% simulate
n=1E6; % simulation size
cum=zeros(n,1); % allocation for cumulative log-returns
epsi=nan(n,1); % allocation for simulated residual (over-written)
sigi=repmat(sqrt(foreMLE),n,1); % alloc. and init. for vols (over-written)
for i=1:5

epsi=sigi.*rand_nrig(n,thetaMLE(5));
sigi=sqrt(thetaMLE(1)+thetaMLE(3)*sigi.^2 ...

+thetaMLE(2)*(epsi+thetaMLE(4)*abs(epsi)).^2);
cum=cum+epsi;

end
mult=1-sort(exp(cum)); % empirical quantiles for simple return loss
VaR=mult(0.01*n); % 99% value-at-risk
ES=mean(mult(1:0.01*n)); % 99% expected shortfall

It is notable that the GARCH simulation has a significantly higher leptokurtosis
than the fitted residuals. The sample excess kurtosis I got from this simulation of
cumulative simple return was about +3.4. The skewness was also significant at 0.86
(skewed toward larger losses than gains). So our risk measure estimates will be much
higher than one would get assuming normal returns.

The results I got are in Table 2.

value-at-risk 0.0448× 1994.24 ≈ 89 points
expected shortfall 0.0590× 1994.24 ≈ 117 points

Table 2: Five-day 99%-confidence risk metrics on October 14, 2015.

One final note: on the five trading days following August 18, 2015, the index lost
229 points. According to our empirical distribution, the (current) probability of five-
day losses at least this great is about 0.01%. Presumably it would have been even less
probable based on data strictly prior to this episode.
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