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Introduction

The analysis of financial timeseries naturally separates into
the analysis of marginal univariate (scalar) random variables
and dependent multivariate (vector) random variables. We
will discuss empirical properties of both aspects.

Samples

Traditionally statisticians seek out i.i.d. samples. We will not
be so lucky as to observe these directly with financial data.
We will generally be able to retain the independence
assumption if we use innovations such as log-returns for risk
factors, but we will not be able to assume that observations
through time are identically distributed.

I For example, the efficient market hypothesis says that
changes in asset prices should be independent from
period to period.
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Independence

Before we define dependence, it is useful to define

Independence

Random variables X and Y are independent iff

F(X ,Y )(x , y) = FX (x)FY (y) (∗)

For all x , y . In particular,

E (XY ) = (EX ) (EY )

We can differentiate (∗) to see that

f(X ,Y )(x , y) = fX (x)fY (y)

It is also true of the characteristic functions φX (t) , E e itX

φ(X ,Y )(tX , tY ) = φX (tX )φY (tY )
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Marginal Density

From Fubini’s theorem, it is generally possible to derive
marginal densities for a joint density, regardless of any
dependence.

fX (x) =

∫ ∞
−∞

f(X ,Y )(x , y) dy

fY (y) =

∫ ∞
−∞

f(X ,Y )(x , y) dx

Of course, if X and Y are independent, then

f(X ,Y )(x , y) = fX (x)fY (y)

but this does not need to be true in general.
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Conditional Density

Conditioning a random variable is a powerful concept!

I The marginal characterization of a dependent variable is
adequate if we do not know or care about the value of
any potentially related dependent variables

I Conditioning, on the other hand, allows us to
incorporate synthesis

Say we know the joint density of (X ,Y ), and we have
learned that an event, say Y = y , is true. We can adjust the
marginal distribution of X to account for this fact

fX |Y (x) = fX (x)
f(X ,Y )(x , y)

fX (x)fY (y)

I Note the analogy here to the Radon-Nikodým change of
measure.
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Conditional Expectation

A natural application of conditioning is the conditional
expectation of a random variable.

EX |Y =

∫ ∞
−∞

x fX |Y (x) dx

Tower Property

Sometimes it is useful to condition on unknown events. In
this case, the conditional expectation is the same as the
unconditional expectation.

E (EX |Y ) = EX

The lesson here is that conditioning has to exclude some
outcomes in order to be consequential.
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Dependence

To the extent that the joint density is not just a product of
the marginal densities, there is dependence.

Factorization
This ratio can be expressed as

fU (FX1(x1),FX2(x2), . . .) ,
f(X1,X2,...)(x1, x2, . . .)

fX1(x1)fX2(x2) · · ·

Copula

Sklar’s theorem says fU : [0, 1]N 7→ R+ is a density function
that characterizes a new random variable, U, that
encapsulates the dependence structure of X . Independence
means fU ≡ 1.

Two random variables that have the same copula are said to
be co-monotonic.
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Stylized Facts
Univariate

Daily timeseries of asset returns have certain general
patterns that have been persistent enough to have become
stylized facts:

I Returns are not i.i.d. but show little serial correlation

I Absolute returns show profound serial correlation

I Conditional expected returns are close to zero

I Conditional variance appears to vary over time

I Extreme return appear in clusters

I Returns appear to be fat-tailed or leptokurtotic

Modern econometric models are able to reflect all of these
phenomena, and we will discuss this extensively in this
module.
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Stylized Facts
Multivariate

In the spirit of Sklar’s theorem, ideally we would like to
isolate common observations about multivariate financial
timeseries into marginal and dependence phenomena.

I Only contemporaneous panel correlations are materially
non-zero

I Absolute returns show profound panel and serial
correlation

I Panel correlations vary over time

I Extreme returns tend to affect a number of components
together

A focus on linear correlations complicates the analysis,
because this measure of dependence is not strictly
determined by the copula. Other dependence measures, such
as Kendall’s concordance, may be more useful.
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Stylized Facts
Multivariate

In a multi-normal model, the conditional expectation of the
dependent variable (Y ) is affine in the independent variable
(X ).

EY |X = EY + β (X − EX )

This relationship is particular to normal margins combined
with a Gaussian copula.
More generally we might write

EY |X = EY + β(X ) (X − EX )

If β(·) is an increasing function, this might be interpreted as
correlations increasing in extreme scenarios. In fact, it is
possible that the copula parameters (Gaussian or otherwise)
might be constant, but marginal leptokurtosis might be
responsible.
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