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The Goal of Estimation

John Dodson

The goal of estimation is to assign numerical values to the
parameters of a probability model.

Considerations

There are several risks to consider:
» What if the model is mis-specified?
» What if the data are corrupt?

These are addressed under the subject of robust statistics,
which we will briefly introduce.



Sample

John Dodson

In classical statistics, the term sample has two related
meanings

> an (unordered) set of N values drawn from the sample
space of some random variable X, {x1,x2,...,xn}

» a random variable consisting of N (independent) copies
X1, ..., Xy of some random variable X; ~ X Vi.

You can think of the former as a realization of the latter.
We can characterize the latter, which we will denote
hereafter by Y(N) £ (X1,..., Xy), as a random variable with

fym (Y) = fx(X1) - - - £x(Xn)

because we have assumed that the draws are independent.



Sufficient Statistic

John Dodson
The characterization of the sample Y(V) can often be
expressed as the characterization of a collection of partial
results, T = T(Xi,...,Xn; N), called sufficient statistics.

Sufficient Statistic

Important Example

Say X ~ N(p,?) and we have a sample
N) = (Xq,...,Xn). The density function of the sample is

fm(y) = (2m0?)"N/2es2 SN (i)

The form of this suggests T = (Y. X;, > X?; N), which
yields

(Nt — 2) (V372

fr(t) = =
N2 T2 (5T (57

—N/2

exp<02<N 2N,u+,u + logo (%)



Estimator

John Dodson

An estimator is a function of a sample.

» If the sample is considered to be random, the value of
an estimator is a random variable subject to
characterization.

» If the estimator is applied to an actual sample,
consisting of draws from the sample space, the value is
non-random and is called an estimate.

Parameter Estimator

We will be mostly interested in estimating the parameters of
a characterization, which we will denote generically by 6. For
a univariate normal, for example, 6 = (u,oz)/.

We will denote the parameter estimator by 0 (Y(N)) where
Y(N) = (Xq,...,Xy) is the sample represented by N
independent copies of the random variable X with a
characterization parameterized by 6.



Quadratic Loss
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Since GA(Y(N)) is a random variable, it is natural to explore
its location and dispersion.

>

>

>

>

In particular, we are interested in how far it can diverge
from the (unknown) true value, 6. Loss

So we introduce a norm with respect to some positive
definite metric @, such that ||v||> = v/Qv for any v in
the sample space of 6.

Loss is the random variable ||6 — 6]|2.
Bias is the (unknown) value ||[E — 6]

Inefficiency is the value 1/E ||6 — E 8]2.

There is a trade-off between bias and inefficiency. In fact,

E Loss = Bias® + Inef?  (prove)



Method of Moments

John Dodson

One classical method for estimating the parameters of a
random variable from a sample is to identify low-order
sample moments with the corresponding “population”

moments of the random variable.
» sample mean X2 %Z,N:l Xj

Method of Moments

» sample variance 5 Z,N:l (xi — x)?

Moment Matching

If a random variable X has a parametric characterization
with only one or two parameters, § = (61, 92)/, it is likely
that a system of the form

EX|A(YVM) = Nz, L X
var X[0 (YV) = 2 3oV X2 — R (Z, 1X>

implicitly defines a unique solution for GA(Y(N)).



Maximum Likelihood Estimator

John Dodson

Since we have the distribution of the sample, perhaps in
terms of sufficient statistics, it is natural to define an
estimator for the parameters as the value of the parameters
such that the sample observed is “most likely”. That is,

O(y) = arg max fympe(y) or

= argmax fria(t)

where the sample is y = (x,...,xy) or
t=T(x1,....,xn; N).
Important Example

Consider the univariate normal from above. In terms of the
sufficient statistics, the MLE (based on (x)) is

i . .1 /b t 2 2
<0A2> = arg(lT;Q)/ = (N — 2N,u+,u ) + log o



Maximum Likelihood Estimator

John Dodson

Important Example
The solution to this (the MLE for a univariate normal) is

Lt _x1

F=N T 11

~ b ( t1 )2 xx' 1'x'x1
g = — — _ = - —
N N 11 111’1

This result extends to the multivariate case X € RM
whereby x has M rows and N columns.

Bias

We can see that the MLE is (slightly) biased.




Maximum Likelihood Estimator

Elliptical random variables

if the density of an r.v. X € RM can be written in the form

fX|,u,):(X) =8 (MaZ(XvM’Z)) \/ |zil|

for some function g(-) where

Ma(x, . ) = \/(x — 1) T (x — )

is the Mahalanobis distance, then the MLE based on a

sample {xi,...,xy} solves the system
N A N w,
~ ] - 1 ~ AN/
H= “Xi Z:Z—(X,—u)(x,—,u)
i=1 ZJ' Wi i=1 N

John Dodson



Fisher Information

John Dodson
In general we cannot evaluate the characterization of the
distribution of an estimator. An application of the Central
Limit Theorem gives us a useful approximation.
lim VA (9 (YM) —6) ~ N (0, 15})
N—oo |

where [ is the Fisher Information matrix

0
IX|9 = cov 00’ log fX\G( ) Standard Error
2

0
= 60 BT log fx|9(X)

Important Example
For the univariate normal, this evaluates to

oy = (7
xXlwory =\ 0 L



Cramér-Rao Bound
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The Cramér-Rao Bound gives us a limit on the resolution of
an estimator.

- 00 N 00
which is attained if the estimator is efficient.

Standard Error
The standard deviations of the margins of the estimator are Standard Error
called the standard errors

se(f) = diag \/diag diag cov §

In the case of the univariate normal example, the bound is

se (Mz) 2 < azm/v—l)
g N2 N

A j I DEQ
covG(Y(N)> > OE& xio 9E0




Admissibility

The expected value of an estimator's loss (given the
unknown true value) is also called the mean squared error!.
We saw before that this is the sum of the estimator’s
squared bias and squared inefficiency.

Admissible Estimators

An estimator whose expected loss is no greater than that of
any other estimator for all possibilities of the unknown value
is termed admissible.

Inadmissibility of the sample mean

We know from the Law of Large Numbers that the sample
mean estimator is unbiased and is efficient in the limit of
large samples. It should come as shock then that, with a
sample space of at least three dimensions, the sample mean
is inadmissible.

LElsewhere this is called the estimator’s risk.

John Dodson



Shrinkage Estimator

John Dodson

It turns out that for X € RM with M > 2 and a sample of
length N, an estimator based on shrinking the sample mean
towards any arbitrary value pig € RM by a particular amount
0 < ap < 1 has lower expected loss.

1
fi = aopo + 1—Oéo

Mz

I:].
For the optimal «y, this is termed the James-Stein
estimator.

» Of course, unless g happens to equal the true value,
this estimator is biased.

» But the reduced inefficiency makes the bias worth it.

> Yet the result is still inadmissible. Improving upon it is
still an open question in statistics.



Robustness

Non-Parametric Estimators

The term robustness in statistics can sometimes refer to
non-parametric techniques that do not require assumptions
about the characterization of the random variables involved.

» Such techniques usually lean on the Law of Large
Numbers, and hence require very large samples to be
effective.

Robust Estimators

A more precise meaning has evolved that focuses on
estimators that may be based on parametric
characterizations, but which can produce reasonable results
for data that does not come from that class of
characterizations or stress-test distributions.

» We can make this desire concrete in term of the the
influence function associated with an estimator.

John Dodson



Robust Estimators
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Influence Function

Wwe have discussed estimators as functions of samples. If
instead we consider the estimator as a functional of the
density from which the sample is drawn, we can consider its
(functional) derivative with respect to an infinitesimal
perturbation in the density given by

fx(x) = (1 — e)fx(x) + ed(x — y)
Thus, with 8 the functional induced by the estimator 0,

B(1 — e)fx(x) + ed(x — y)] — O [fx]

€

F [y 5.8 = tm

If this derivative is bounded for all possible displacements, v,
we say the estimator is robust.



Robust Estimators

John Dodson

Robustness of the MLE
For the maximum likelihood estimator, the influence function
turns out to be proportional to

0 log fxjo(y)

IF[y, fX,HA} x 50

0=0

For some characterizations, the parameter MLE's are robust.
For some they are not.

» for X ~ N(p,X), fi and S are not robust
» for X ~ Cauchy(u,X), they are

Even for the empirical characterization, the influence
functions for the sample mean and the sample covariance are
not bounded; therefore these sample estimators are never
robust.



M-Estimators
John Dodson

Location and Dispersion
Recall the general elliptic location and dispersion MLE's,

Wi

Xi

=
Il
-MZ
g

|
-

i Wi

Wi
IlN
W-éh(l\/la (x,-,ﬁ,f)) Vi=1,....N

b (xi =) (i — ) with

I
Mz

M-Estimators

where the function h(-) is the value of a particular functional
on the density. The idea with M-estimators is to choose h(-)
exogenously in order to bound the influence function by

design.



M-Estimators
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We know that h(-) = 1 corresponds to the MLE for normals
and also to the sample estimators, which do not have
bounded influence functions. A weighting function that falls
towards zero for large arguments is more likely to be robust.
Some examples include

» Trimmed estimators for which

b= 11 2<% = Qg ()

0 otherwise

_ lidimX

» Cauchy estimators for which h(z) 17 M-Estimators

» Schemes such as Huber's or Hampel's for which

1 z<zo:<ﬂ+\/m>2

(Vz—yz)?

Le w2 otherwise

h(z) =

These estimators can be evaluated numerically by iterating
to the fixed point.
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