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Introduction

We have discussed continuous multivariate random variables
and some broad parametric classes. It is clear that each
instance of these involves at least one class of univariate
random variable in the form of the marginals for the
components. But it is also clear that the characterization of
the original multivariate r.v. is not simply a collection of
these marginal characterizations. There is a structure, with
its own parameters, that connects them together.

I This is the copula.

For me, this is the prototypical example; and multivariate
random variables are a rich source for parametric copulas.
But it is not the only source. In fact, any random variable
whose sample space is a unit hypercube with standard
uniform margins is a copula.
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Sklar’s Theorem

To the extent that the joint density is not just a product of
the marginal densities, there is dependence.

Factorization
This ratio can be expressed as

fU (FX1(x1),FX2(x2), . . .) ,
f(X1,X2,...)(x1, x2, . . .)

fX1(x1)fX2(x2) · · ·

Copula

Sklar’s theorem says this is always possible. More generally,
fU : [0, 1]d 7→ R+ is a density function that characterizes a
new random variable, U, that encapsulates the dependence
structure of X .

Note that independence means fU ≡ 1
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Copulas

Normal (Gaussian) Copula

When dependence can be entirely described by correlation,
the Gaussian copula can be appropriate. For d = 2,

fU(u) =
1√

1− ρ2
exp

[
−ρ

1− ρ2
(
ρ erfc−1(2u1)2 · · ·

− 2 erfc−1(2u1) erfc−1(2u2) + ρ erfc−1(2u2)2
)]
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Tail Dependence

Upper & Lower Tail Dependence

Tail dependence is a pair-wise measure of the concordance of
extreme outcomes.

λU = lim
p↑1

P {X > F←X (p)|Y > F←Y (p)}

λL = lim
p↓0

P {X ≤ F←X (p)|Y ≤ F←Y (p)}

The normal copula fails to exhibit tail dependence: extreme
outcomes are essentially independent.

This is a problem, because in practice an extreme outcome
in one dimension often acts to cause extreme outcomes in
other dimensions. Developing practical alternatives that
include this contagion effect is an active area of research.
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Measures of Concordance

Several measures of concordance have been developed.
Their definitions are motivated by the properties of their
estimators, which we will not discuss just yet. Each ranges
from −1 to 1, with 0 for independence. In order of
generality, we have

1. Pearson’s rho. This is the classical linear correlation
measure.

2. Spearman’s rho. This is correlation applied to the
grades, FX (X ). It is a simple measure of dependence
that is not sensitive to margins.

3. Kendall’s tau. This is a pure copula measure. It is
based on rank-order correlations.

N.B.: While independence implies zero concordance (under
any of these definitions), zero concordance does not imply
independence.
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Kendall’s tau

Kendall’s tau can be defined as

τ = 4 EFU(U1,U2)− 1

where FU is the distribution function characterizing the
copula of X . It is the probability of concordance minus the
probability of discordance for two independent draws of X .

Relationship with other measures

In general Spearman’s rho is bounded by

3|τ | − 1

2
sgn τ &

1 + 2|τ | − τ2

2
sgn τ

For a Gaussian copula, Pearson’s rho is

ρ = sin
(
π
2 τ
)

One can use this to define the pseudo-correlation.
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Kendall’s tau

The relationship between Kendall’s tau and Spearman’s and
Pearson’s rho is illustrated by this graph.
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For a given level of Kendall’s tau, Spearman’s rho is
bounded by the two outer curves. Pearson’s rho for a
Gaussian copula is the curve through the origin.
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Normal Mixture Copulas

A normal mixture copula is simply the copula from a normal
mixture multivariate random variable. The elliptical copula is
an important subclass.

Elliptical Copula

An elliptical random variable is described by a mean vector,
a dispersion matrix, and a characteristic generator function.
It should be clear that the mean vector has no role in the
copula. It should also be clear that the diagonal entries of
the dispersion matrix also do not play a role.

Generally, an elliptical copula is parameterized by a
semi-definite matrix with unit diagonals, which describe
pair-wise dependence, and one or several shape parameters
related to the characteristic generator.
The Gaussian copula is an example. Another important
example is the tν copula, which we will work with in this
week’s exercise.
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Archimedean Copulas

There are on the order of d2/2 parameters to estimate for
an elliptical copula. If you are dealing with a very large
dimension, such as in a retail or securitization context, you
either need a factor model to reduce the dimension or you
should consider an Archimedean copula.

Archimedean Copulas

An Archimedean copula is defined in terms of a generator, a
decreasing continuous function ψ : [0,∞) 7→ [0, 1] with
ψ(0) = 1 and limt→∞ ψ(t) = 0. The copula distribution is

C (u1, u2, . . . , ud) = ψ
(
ψ−1 (u1) + ψ−1 (u2) + · · ·+ ψ−1 (ud)

)
Three common single-parameter examples are the Gumbel,
Clayton, Frank.
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