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This assignment is not a regular homework. It is worth half of the module grade for the spring term.
Please share your solution with me through Google Drive before the beginning of the classroom session on
Wednesday, March 9 (extended from March 2).

Please write up your results into a report and submit a PDF version (My edition of LibreOffice can
recognize most word processing formats, but often the formatting, equations, and exhibits are altered or
corrupted.) You may be able to covert directly to PDF from your word processor or type setter, or you may
be able to “print to PDF” using a print driver.

I expect you to work independently and to cite your sources. Please remind yourself of the University’s
definition of scholastic dishonesty (see the syllabus).

Valuing a CDS under a structural model

In this problem, you will explore credit default swap valuation in the solvency version of the structural
model, which was originally contemplated in the same Merton (1974) paper that is cited in our text, reintro-
duced in Leland (1994) and extended in Leland & Toft (1996) and again in Hilberink & Rogers (2002).

You worked with the solvency version of the structural model last semester in the context of equity
valuation. Here we set-up the model again using the notation of §10.3 from the text.

A firm has assets and liabilities. The assets are not liquid and cannot be used to pay interest on the
liabilities; rather, the assets generate earnings which are used to pay interest to creditors, taxes to taxing
authorities, and dividends to owners. Retained earnings are immediately reinvested into (illiquid) assets1.

The value of the assets is a stochastic process (Vt), which is a geometric Brownian motion with (con-
stant) volatility σ. The (constant) after-tax earnings rate on assets is δ. Since an investor could own shares
in both the debt and the equity, s/he could construct a position in the asset process. Therefore, there should
be a unique risk-neutral measure such that the process for the assets is

dVt = (r − δ)Vt dt+ σVt dWt (1)

where r is the (constant) risk-free interest rate and (Wt) is a standard Brownian motion.
The (fixed) interest burden is rK. In this model, creditors are effectively short a perpetual American-

style put, which the owners (or more realistically the bankruptcy trustees) can exercise to give the remaining
1Allowing some unobservable fraction of the assets to remain liquid is a natural mechanism for introducing a “fuzzy boundary”

to solve the accessible default problem in this model, but it complicates the analysis.
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assets of the firm to the creditors in exchange for cancelling the debt contracts. The strike price for this put
is K. The value is

pt = (K − Vt ∧ L)

(
L

Vt ∨ L

)γ
where the (dimensionless) volatility scale parameter is

γ =
r − δ
σ2
− 1

2
+

√(
r − δ
σ2
− 1

2

)2

+
2r

σ2

and the (Markovian) exercise event is defined by inf {t : Vt ≤ L} where

L =
K

1 + 1
γ

The value processes for the debt and equity are Bt = K − pt and St = Vt −K + pt. Discounted at the
risk-free rate and accounting for cashflows, (Vt), (Bt), and (St) are all non-negative martingales under the
risk-neutral measure.

The credit event for a credit default swap is not the exercise of the put. That is too late. Rather, it is the
first moment when the the earnings are insufficient to meet the interest burden (“insolvency”). The default
stopping time τ is therefore defined by

τ = inf
{
t : Vt ≤ L′

}
(2)

where
L′ =

rK

δ
=

L

1− γ σ2

2r

In order to value credit default swaps, we need the (risk-neutral) probability distribution of the default
stopping time τ . This involves the distribution of the first passage time of a drifted Brownian motion, which
is a standard result from the theory of stochastic processes.

The first passage time of a drifted Brownian motion

If τ is the first passage time for a drifted Brownian motion,

τ = inf {t : θt+Wt ≤M} (3)

withM < 0, then it is an inverse Gaussian random variable with probability density and distribution function

fτ (t) =
−M√
2πt3

e−(θt−M)2/(2t) (4)

Fτ (t) = e2MθΦ

(
M√
t

+ θ
√
t

)
+ Φ

(
M√
t
− θ
√
t

)
(5)

Note that if θ > 0, limt→∞ Fτ (t) = e2Mθ < 1, so there is a positive probability associated with the event
{τ =∞}.
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Problems

1. Solve the stochastic differential equation (1) for Vt in terms of V0. From this determine the values for
the generic drift θ and thresholdM in (3) that correspond to the definition of default in (2). (30 points)

2. The payoff of a credit default swap is 1 − Bτ/B0. A feature of this model is that this is an F0-
measurable quantity. Evaluate it in terms of the model parameters and V0 or M . (10 points)

3. Determine the swap rate s0(T ) such that the risk-neutral expected value of the risk-free discounted
value of the (continuous) stream of premium payments until τ∧T equals that of the default-contingent
payoff2. (20 points)

4. Numerically evaluate s0(10), the ten-year CDS rate, for the “bank” that was defined in our first fall
exercise. (10 points)

Grading Rubric

Thirty out of one hundred points will be based on the following criteria:

• You follow the instructions. (10 points)

• You include adequate citations. (10 points)

• Your write-up is clear and professional. (10 points)

Solution

Inverse Gaussian parameters

The solution for Vt is achieved in the usual fashion by taking logs and applying Itô’s Lemma,

d log Vt =
(
r − δ − 1

2σ
2
)
dt+ σdWt (6)

hence

Vt = V0e

(
r−δ−1

2σ
2
)
t+σWt (7)

The default condition is

V0e

(
r−δ−1

2σ
2
)
t+σWt ≤ L′ (8)

or
r − δ − 1

2σ
2

σ
t+Wt ≤

1

σ
log

L′

V0
(9)

Comparing this to (3), we see that

θ =
r − δ
σ
− σ

2
(10)

2Express the solution in terms of the Gauss error function erf(x) = 2√
π

∫ x
0
e−t

2

dt or the normal distribution function Φ(x) =∫ x
−∞

e−t2/2
√
2π

dt = 1
2

+ 1
2

erf
(
x/

√
2
)
.
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and

M0 =
1

σ
log

L′

V0
(11)

The “distance to default” M0 is always negative. The subscript is to remind us that this is a stochastic
quantity.

Note that θ can be simplified in terms of γ,

θ =
γσ

2
− r

γσ
(12)

and in turn we can solve for γ in terms of θ,

γσ = θ +
√
θ2 + 2r (13)

which will be convenient below.
The drift θ might be positive or negative depending on the relative magnitudes of r and 1

2γ
2σ2.

Credit default swap payoff

At default, the value of the debt is Bτ is K − pτ . Since Vτ = L′, this evaluates to

Bτ = K − (K − L′ ∧ L)

(
L

L′ ∨ L

)γ
(14)

As long as r > 0 then γ > 0 and 0 < L < L′. So

Bτ = K − (K − L)

(
L

L′

)γ
(15)

for τ > 0 (prior to default),

B0 = K − (K − L)

(
L

V0

)γ
(16)

We can get that the CDS payoff from these,

1− Bτ
B0

=
e−γσM0 − 1

(1 + γ)
(
V0
L

)γ − 1
(17)

which here has L′ eliminated through the introduction of (11).
Note that the payoff is technically undefined if τ = ∞, which we see is a possibility if θ > 0. We can

define it arbitrarily to be (17) in this case as long as we never attempt to use the payoff at infinity for any
calculations3.

3This was pointed out by a student. You know who you are!

4



Credit default swap rate

In order to value the CDS, we need two expectations of functions of the default stopping time:

E0

[
χ{τ<T}

]
= P0 {τ < T} =

∫ T

0
fτ (t) dt (18)

and

E0

[
e−rτχ{τ<T}

]
=

∫ T

0
e−rtfτ (t) dt (19)

These integrals are actually quite similar once you recognize that, by completing the square in the exponen-
tial of (4),

e−rtfτ (t; θ,M) = eM(θ+
√
θ2+2r)fτ ′(t;−

√
θ2 + 2r,M) (20)

The value the floating default-contingent insurance leg less the value of the fixed premium leg should be
zero at inception when the swap rate s0(T ) is set.

0 = E0

[
χ{τ<T}e

−rτ
(

1− Bτ
B0

)
−
∫ τ∧T

0
e−rts0(T ) dt

]
(21)

Evaluating the integral,

0 = E0

[
χ{τ<T}e

−rτ
(

1− Bτ
B0

)
− s0(T )

r

(
1− χ{τ<T}e−rτ −

(
1− χ{τ<T}

)
e−rT

)]
(22)

combining terms,

0 = −s0(T )

r

(
1− e−rT

)
− s0(T )

r
e−rT E0

[
χ{τ<T}

]
+

(
s0(T )

r
+ 1− Bτ

B0

)
E0

[
χ{τ<T}e

−rτ ] (23)

and applying (20), (13), and (17), we get

0 = −s0(T )

r

(
1− e−rT

)
− s0(T )

r
e−rTFτ (T ) +

(
s0(T )

r
+

e−γσM0 − 1

(1 + γ)
(
V0
L

)γ − 1

)
eγσM0Fτ ′(T ) (24)

which can be solved for the swap rate

s0(T ) =

r

(1+γ)
(
V0
L

)γ
−1

1 +
(1−Fτ ′ (T ))−e−rT (1−Fτ (T ))

(1−eγσM0)Fτ ′ (T )

(25)

where

Fτ (T ) = e2M0θΦ

(
M0√
T

+ θ
√
T

)
+ Φ

(
M0√
T
− θ
√
T

)
(26)

Fτ ′(T ) = e2M0(θ−γσ)Φ

(
M0√
T

+ (θ − γσ)
√
T

)
+ Φ

(
M0√
T
− (θ − γσ)

√
T

)
(27)

Note that since θ − γσ < 0, limT→∞ Fτ ′(T ) = 1, so

lim
T→∞

s0(T ) =
r

(1 + γ)
(
V0
L

)γ − 1
(28)

On the other hand, since Fτ ′(0) = 0,
s0(0) = 0

which is consistent with the accessible nature of the default stopping time in this model.
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Worked example

Let’s examine the set-up from the September 9, 2015, assignment. The firm has a current asset value of
V0 = 100 (million USD). The after-tax income rate is δ = 0.048 (per year) and the (annual) volatility rate
is σ = 0.02. With the (annual) risk-free interest rate r = 0.01, we determined that γ ≈ 0.26.

The fixed expenses are Kr = 3.04 (million USD per year), so the liquidation strike price is K = 304
(million USD), the liquidation threshold is L = K/(1 + 1

γ ) ≈ 63.0 (million USD), and the insolvency
threshold of L′ = rK/δ ≈ 63.3 (million USD) is almost identical.

The (annual) distance to default, according to (11) is M0 ≈ −22.8 and the (annual) drift according to
(12) is θ ≈ −1.9.

According to (28) the asymptotic credit spread is s0(∞) ≈ 0.0236 (per year) or 236 basis points.
At the ten-year tenor, T = 10 (years), the (risk-neutral) default probability is Fτ (10) ≈ 0.133. The ad-

justed probability is Fτ ′(10) ≈ 0.137 and the credit default swap rate according to (25) is s0(10) ≈ 0.0039
(per year) or 39 basis points.

While this result might seem reasonable, it is also a little deceptive since the credit default rate for any
tenor less than than about 7.8 years is under one basis point. This is the accessibility effect. Notably, it is
not clear how the Duffie-Lando “fuzzy boundary” fix would help us here, since the insolvency threshold and
the liquidation threshold are so close together. Perhaps we need to introduce a jump process into the asset
value.
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Appendix: Inverse Gaussian distribution function

An approach to the integral in (18), ∫ T

0

−M√
2πt3

e−(θt−M)2/(2t) dt

based on [1], is to change variables to u = (M − θt)/
√
t. This is monotonic over the integration region as

long as θ < 0; and since we can use (20) with r = 0 otherwise, let’s assume that θ < 0 at this stage and go
back and check the non-negative case later.

u =
M√
t
− θ
√
t (29)

u(0) = −∞ u(T ) =
M√
T
− θ
√
T

du =
−M√
t3

(
1

2
+

θt

2M

)
dt (30)

We can invert (29) to get

t =
M

θ
+

u

2θ2

(
u+

√
u2 + 4Mθ

)
(31)

and with some manipulation we can re-write (30) as(
1− u√

u2 + 4Mθ

)
du =

−M√
t3
dt (32)

so ∫ T

0

−M√
2πt3

e−(θt−M)2/(2t) dt =

∫ M√
T
−θ
√
T

−∞

1√
2π

(
1− u√

u2 + 4Mθ

)
e−

1
2u

2

du

= Φ

(
M√
T
− θ
√
T

)
−
∫ M√

T
−θ
√
T

−∞

1√
2π

u√
u2 + 4Mθ

e−
1
2u

2

du

The integral in the second term above is facilitated by a further change of variables, v = −
√
u2 + 4Mθ,

whereby
dv = − u√

u2 + 4Mθ
du

The lower integration bound remains −∞, while the upper bound becomes −
∣∣∣ M√

T
+ θ
√
T
∣∣∣, and since

both M and θ are negative, we get∫ M√
T
−θ
√
T

−∞

1√
2π

u√
u2 + 4Mθ

e−
1
2u

2

du = −
∫ M√

T
+θ
√
T

−∞

1√
2π
e−

1
2v

2+2Mθ dv

Putting this together, we get the result∫ T

0

−M√
2πt3

e−(θt−M)2/(2t) dt = e2MθΦ

(
M√
T

+ θ
√
T

)
+ Φ

(
M√
T
− θ
√
T

)
(33)
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Now let’s check the case θ > 0. From (20), fτ (t; θ,M) = e2Mθfτ ′(t;−θ,M), so all we need to do is
replace θ → −θ in (33) and scale the result by e2Mθ. But (33) is unchanged by this.

Finally, let’s check θ = 0, which is a special case because (31) as it is written is undefined. In this case,
(32) becomes

2 du =
−M√
t3
dt (32’)

and ∫ T

0

−M√
2πt3

e−M
2/(2t) dt = 2

∫ M√
T

−∞

1√
2π
e−

1
2u

2

du = 2Φ

(
M√
T

)
But this is also consistent with (33). So in conclusion the result for the distribution function holds for all
(real) θ.
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