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Cramér–Rao lower bound

The Cramér–Rao lower bound is a classic result in statistics. I provide below an outline of a proof in the
multi-parameter setting. See for example [1] chapter 8.

Consider a parametric model for a random variable X with density function fX(·) with unknown pa-
rameters expressed as the components of θ. Say we have an estimator θ̂(·). In particular θ̂(X) is a random
variable, but it does not have an explicit dependence on θ. Further, assume the estimator is unbiased. There-
fore,

0 = E
[
θ̂(X)− θ

]
=

∫ (
θ̂(x)− θ

)
fX(x) dx

Let’s further assume that fX(x) and ∂
∂θfX(x) are continuous in θ for all x in the support of X . Therefore

we can distribute the gradient with respect to the parameters to get

0 =

∫ (
θ̂(x)− θ

) ∂fX(x)
∂θ

dx− I
∫
fX(x) dx

or, with some manipulation (noting that f(x) > 0 on the support of X by definition),∫ ((
θ̂(x)− θ

)√
fX(x)

)(∂ log fX(x)
∂θ

√
fX(x)

)
dx = I

Consider any fixed a and b in the parameter space. The previous result means∫ (
a′
(
θ̂(x)− θ

)√
fX(x)

)(∂ log fX(x)
∂θ

√
fX(x) b

)
dx = a′b

This can be thought of as an inner product in the Hilbert space L2, which means we can apply Cauchy-
Schwarz to get

a′
(∫ (

θ̂(x)− θ
)(

θ̂(x)− θ
)′
fX(x) dx

)
a b′
(∫

∂ log fX(x)

∂θ′
∂ log fX(x)

∂θ
fX(x) dx

)
b ≥

(
a′b
)2
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Fisher Information

Define the Fisher information to be

I(θ) , E

[
∂ log fX(X)

∂θ′
∂ log fX(X)

∂θ

]
(1)

= cov

[
∂ log fX(X)

∂θ′

]
(2)

= E

[
− ∂2

∂θ′ ∂θ
log fX(X)

]
(3)

if the curvature of the log-likelihood is continuous on its support in the last instance (see Appendix).
With b , I−1(θ) a, the previous result translates to(

a′ cov
[
θ̂(X)

]
a
) (
a′I−1(θ) a

)
≥
(
a′I−1(θ) a

)2
So we can conclude that

a′
(
cov

[
θ̂(X)

]
− I−1(θ)

)
a ≥ 0

for all vectors a.
This conforms to the definition of a positive semi-definite matrix, and can be written as

cov
[
θ̂(X)

]
≥ I−1(θ) (4)

Note that the Cramér–Rao lower bound is a special case of the Kullback inequality about the relative
entropy of one measure with respect to another.

Appendix

Recalling that we assumed we can apply Leibniz’ Rule to distribute partials of θ and integrals over the
support of X , so

E

[
∂ log fX(X)

∂θ′

]
=

∫
∂

∂θ′
fX(x) dx =

∂

∂θ′
(1) = 0

and therefore we can verify (2):

cov

[
∂ log fX(X)

∂θ′

]
= E

[
∂ log fX(X)

∂θ′
∂ log fX(X)

∂θ

]
If we further assume that the second parameter partials of the density are continuous, then

E

[
∂2

∂θ′∂θfX(X)

fX(X)

]
=

∂2

∂θ′∂θ
(1) = 0

and since
∂2

∂θ′∂θ
log fX(X) =

∂2

∂θ′∂θfX(X)

fX(X)
− ∂ log fX(X)

∂θ′
∂ log fX(X)

∂θ
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we get the curvature version (3):

E

[
− ∂2

∂θ′∂θ
log fX(X)

]
= E

[
∂ log fX(X)

∂θ′
∂ log fX(X)

∂θ

]
From a practical perspective, it is useful to have two options for evaluating the Fisher information. It

is sometimes easier to calculate the covariance of the first partials, and sometimes easier to calculate the
expected value of the second partials.
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