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Let us consider the expected shortfall index of satisfaction for a very simple portfolio: A shares in an
asset whose value today is p > 0 and whose horizon value P is lognormal.

Let us assume that the objective measure is mark-to-market profit; therefore in the text’s notation, we
have (apologies for the signs)

~L=A(P-p)
:)\p(eX—l)

where the invariant total return is normal X ~ A (u, ¥) with mean x and variance ¥ > 0. The risk measure
is
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for confidence level ¢ < 1 in terms of the quantile function for the objective value.
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1 Exact Version

In this simple situation, we can actually calculate a relatively simple expression for the value of index of
satisfaction. It will be useful to compare this below with the approximate value we get from the Cornish-
Fisher expansion.

We proceed to evaluate the exact version by considering the CDF of the objective.
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where ®(-) is the CDF of a standard normal.



The quantile, which is the inverse of the distribution function, is therefore
F5.(q) = Ap (eu+sgn AWET(g) _ 1)

So can proceed to evaluate the index of satisfaction.
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where the last line is achieved by the change of variable z = ®~1(¢) and ¢(z) = ®'(2) is the density of a
standard normal.
Since
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we have the final result,
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2 Short Horizon Approximation

For short horizons, the mean and variance of the total return invariant are small. To lowest order, the exact
result in (1) can be approximated by
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Let us spend a moment interpreting this. A long is less risky (A > 0) if the asset has a positive expected
return (¢ > 0), and a short (A < 0) is less risky if the asset has a negative expected return (1 < 0). In
contrast, positive variance increases risk for any non-zero position.

This all seems quite reasonable for a rational risk measure.

3 Cornish-Fisher Approximation

It is unusual to have a simple analytic expression for the expected shortfall such as (1). This is why the
Cornish-Fisher expansion can be useful in practice. In order to use this, we need several low central moments
for the loss. In a Delta-Gamma setting, we can replace the objective by the quadratic

—L=Mp (eX — 1) ~ Ap (X+ %Xz)
hence ©) = 0, Ay = Ap, and Iy = Ap. Let us define a new objective to represent this approximation.

Ex=Ap (X +3X?)
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Is is straight-forward to work out that the first several central moments of this are
E(E)) =Ap (u+ 54° + 3%)

Sd(2)) = ApVE/ (1 + p)2 + 1
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The third-order Cornish-Fisher expansion for expected shortfall in general is
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with coefficients
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depending on the confidence level ¢ < 1.

Putting this together, we get a third expression for the index of satisfaction.
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This result agrees with (2) to lowest order in & and .

"The trick to these integrals is to realize that ¢'(z) = —z¢(2).



4 Modeling Default

Our horizon asset value P is bounded below by zero in this set-up. But if this is a model for a financial
asset, we probably need to consider how the possibility of default would change the value of the expected
shortfall. An amendment to the market model to consider is

—L'=xp(Ye¥ —1)

where X ~ N(u, ) as before?, but now we add an independent default indicator Y ~ Bern(1 — h) for
default probability h.

%Since we cannot observe default events in the historical record for the total return, there is no reason to alter the objective model
for the invariant.



