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John Dodson

October 12, 2016

This assignment is not a regular homework. It is worth half of the module grade for the fall term.
Please share your solution with me through Google Drive before the beginning of the classroom session on
Wednesday, October 19.

Your solution should include source code for programs and instructions for how to run them with the
software available on Math Department computers, for example ‘shelby’ in VinH 314. I recommend you
use tar or zip if you will be submitting several files.

I expect you to work alone and cite your sources. Please remind yourself of the University’s definition
of scholastic dishonesty.

Problems

This problem will be based on the timeseries of daily log-returns (adjusted for splits and dividends) of the
S&P 500 index, ticker ^GSPC, for 2,500 business days (about ten years) through October 7, 2016.

An important variant of GARCH for equity factors is the “leveraged” model of Glosten, Jagannathan,
and Runkle (at the University of Minnesota!) in 1993. We can parameterize this as

σ2t = α0 + α1 (εt−1 + δ |εt−1|)2 + β1σ
2
t−1

for |δ| < 1. Existence of an unconditional variance requires α1

(
1 + δ2

)
+ β1 < 1.

The point of this modification is that there are two versions of the α1 ARCH term: one in reaction to
ups and one in reaction to downs. δ < 0 expresses the leverage phenomenon, where declines in asset values
provoke more volatility then increases do.

1. Estimate the values of the parameters of a GJR-GARCH(1,1) process for the log-returns of the index
using quasi-maximum likelihood. (30 points)

2. Use the fit above to standardize the historical residuals and use maximum likelihood to fit a generalized
Pareto to the 2% left tail. (20 points)

3. Based on the conditional variance forecast and the characterization of the residuals, calculate the 99%
one-day value-at-risk (in index points) for a long position. (30 points)
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Grading Rubric

Thirty out of one hundred points will be based on the follow criteria:

• You follow all of the instructions. (5 points)

• I can reproduce your results with the code and documentation you provide. (5 points)

• Your write-up is clear and professional. (10 points)

Solution

The S&P Index had daily returns less than -5% on fourteen days and positive returns greater than +5%
on nine days between November 2, 2006 and October 7, 2016. This would seem to suggest that negative
residuals are scaled somewhat more than positive residuals, and we see that in the model fit in Table 1.

α̂0 3.21×10−6

β̂1 0.871
α̂1 0.0504
δ̂ -1.000

Table 1: QMLE model parameter fits with a log-likelihood of 7998.6

It is interesting to compare this result with simpler models. If we restrict the fit to a constant volatility
(α1 = 0), the maximum log-likelihood is about 2.91 nats per day. For regular GARCH(1,1) (δ = 0), this
increases to 3.17 nats per day. Finally, letting δ float, we get 3.20 nats per day. At all stages, the increase in
model complexity is justified by the increase in the fit quality.

As we have seen before, the intercept (α0) is essentially zero and the GARCH terms (β1) dominate
the ARCH terms. Interestingly, we also see that the asymmetry term δ is floored. This means that the
ARCH contribution for a positive innovations is effectively zero, while the ARCH contribution for negative
innovations is a sizable 0.202 (4α1).

Let T denote October 7, 2016 in units of trading days. The QMLE fit gives

forecast σ2T+1 57.6×10−6

unconditional σ2 114.×10−6

so it seems that volatility is relatively low at the end of the period but is expected to rise.
One final observation about the fit is that the sample variance of the log-returns is 175.1× 10−6, which

is somewhat different from the unconditional variance estimate based on the MLE here (without variance
targeting), so variance targeting may give different results.

Let’s check the standardized residuals for clustering. In the table below are the dates of the 25 worst
daily returns over the period. It does seem by eye that there are more extreme losses in the earlier part
of the period than the later part of the period, but the distribution of the intervals is not too far from the
expected exponential distribution. In fact, the mean of the interval is 100.1 and the standard deviation is
92.3, which are not far from the theoretical values of 100 business days for each under the independence
assumption. Without standardizing, the mean length of the interval between 1% exceedances is 30.7 and the
standard deviation is 117.1, both of which would tend to reject the independence hypothesis. In fact, without
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standardizing, there is not a single loss exceedance at the 1% level between April 20, 2009 and August 4,
2011.

27-Feb-2007 10-Feb-2009 27-Apr-2010 1-Jun-2011 31-Jul-2014
19-Oct-2007 20-Apr-2009 16-Jul-2010 4-Aug-2011 29-Jun-2015
1-Nov-2007 17-Aug-2009 11-Aug-2010 8-Aug-2011 20-Aug-2015
6-Jun-2008 1-Oct-2009 28-Jan-2011 7-Nov-2012 24-Jun-2016

29-Sep-2008 16-Apr-2010 22-Feb-2011 15-Apr-2013 9-Sep-2016

Table 2: The dates of the twenty-five largest standardized losses in the historical period.

Let’s move on to fitting a generalized Pareto to the 2% left tail of the standardized daily returns. Using
the methods from previous assignments and the demonstration, I got the results in the table below.

θ 0.02
η̂ -2.493
β̂ 0.322
ξ̂ 0.412

Table 3: MLE parameters for the 2% left tail of the standardized daily returns with a log-likelihood of
-209.6.

Evaluating the quantile function,

F−1(q) = η − β

ξ

((
θ

q

)ξ
− 1

)
for q ≤ θ

at q = 0.01 gives a 1% threshold loss of about -2.75 standard deviations.
This corresponds to a long value-at-risk of about

2153.74×
(
e−2.75×

√
57.6×10−6 − 1

)
or about -44.5 index points, or just over a 2% loss for Monday, October 10, 2016.

Compare this result to a simplistic version, based on the sample variance and the normal distribution.
With Φ−1(0.01) ≈ −2.33, we get a long 1% value-at-risk of about -65.3 index points.
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