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Random Variables

Definitions
For our purposes, a random variable is a quantity whose
value is not known to us right now (but may be at some
point in the future). These can be represented
mathematically as measurable functions of a sample space,
and we will usually denoted them by upper-case letters. We
will usually denote a particular value obtained by a random
variable by the corresponding lower-case letter.
There must be a probability associated with every set of
outcomes. Such sets are called events and might consist of
intervals or points or a combination thereof. The
corresponding probability is called the probability measure of
the event.
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Random Variables

This structure lends itself to a measure theory interpretation,
where the probability associated with a set is simply the
integral of the probability density over that set. For reals
a < b,

P {X : a < X < b} =

∫ b

a
fX (x) dx

If the sample space of X is the real numbers, R, then fX (·)
must have certain properties: It must be a non-negative
(generalized) function and

lim
x→−∞

fX (x) = 0 lim
x→+∞

fX (x) = 0∫ +∞

−∞
fX (x) dx = 1
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Characterizations

In addition to the density function, there are several other
equivalent characterizations of a real random variable

I distribution function FX (x) =
∫ x
−∞ fX (x ′) dx ′

I quantile function qp (FX ) = F←X (p)

I characteristic function φX (t) =
∫∞
−∞ e itx fX (x) dx

The quantile function is defined in terms of the generalized
inverse

F←(p) = inf {x : F (x) ≥ p}

The characteristic function is based on the Fourier transform
of the density, where i2 , −1.

Functions of random variables are generally other random
variables. Evaluating them amounts to determining the
effect on a characterization.
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Taxonomy of Random Variables

Below is a taxonomy of common random variables, classified
primarily by the topology of their support.

I finite
I Dirac
I Bernoulli

I countable
I binomial
I geometric
I Poisson

I interval
I uniform
I beta

I half-line
I exponential
I Gamma

I unbounded
I normal
I Cauchy
I (Lévy’s) stable

I transforms
I generalized Pareto
I gen. inv. Gaussian
I lognormal

I mixtures
I (Gosset’s) Student’s-t
I negative-binomial
I generalized hyperbolic

I non-parametric
I empirical
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Finite Support

Let us start our tour by considering two special classes of
random variables.

Bernoulli
A Bernoulli r.v. is a “bit”. Its sample space can be
characterized by

I 0/1, T/F, heads/tails, win/lose, up/down

and there are only four possible events (what are they?). It
has only one parameter (not necessarily equal to 1

2 ).

Dirac
The sample space for a Dirac r.v. is, in principle, R; but only
events that contain x0 have non-zero measure, where x0 is
the only parameter. It can be thought of as the degenerate
continuous r.v. We write its density as fX (x) = δ(x − x0),
which can be represented as a spike.
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Countable Support: Discrete Sample Space

binomial
If we think of a Bernoulli r.v. as having sample space {0, 1},
the sum of n Bern(p) r.v.’s is a bin(n, p) and its sample
space is {0, 1, . . . , n}. From combinatorics, we know

P{i} =

(
n

i

)
pi (1− p)n−i ∀i ∈ {0, 1, . . . , n} ⊂ Z

Stirling’s Approximation

A useful result from calculus is Stirling’s approximation,
which says that n! ≈

√
2πn

(
n
e

)n
for n� 1. In particular,

(
n

i

)
≈ 1√

2πn

(
i

n

)−i−1
2
(

1− i

n

)−n+i−1
2

for large n, i .
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Countable Support: Discrete Sample Space

geometric

A geometric r.v. is also related to a sequence of Bernoulli
r.v.’s. In terms of the coin toss analogy, it is the length of
the “streak” of tails tossed before the next head appears.
Again from combinatorics, we know

P{i} = p(1− p)i ∀i ∈ {0, 1, . . .}

I Notice that the sample space here is countably infinite.
One could observe a streak of any length for 0 < p < 1.

I Notice also that the process underlying this model is
memoryless. The fact that one has already observed a
streak of length n is irrelevant: the only parameter is p,
the chance of breaking the streak on the next toss.
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Countable Support: Discrete Sample Space

Another notable r.v. whose sample space is the nonnegative
integers is the Poisson.

Poisson
Consider a binomial r.v. with a very large sample space but a
very small probability of occurrence. If we take the limit
n→∞ but we fix p = λ/n, we get

P{i} = e−λ
λi

i !

using Stirling’s Approximation and the limit definition of the
exponential function,

lim
n→∞

(
1 +

x

n

)n
=
∞∑
i=0

x i

i !
= ex ∀x ∈ R

Analogously, we shall see later that the interval between rare
events is the limiting case of a geometric r.v.
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Interval Support

Now let’s move on the r.v.’s whose sample space is a
segment of the real line, traditionally taken to be [0, 1].

uniform
The probability of observing a value of a uniform r.v.
between 0 ≤ a < b ≤ 1 is equal to b − a.

I Any particular value between zero and one is equally
likely to be observed.

I imagine a binary decimal, e.g. 0.0110 . . ., where each
bit to the right of the decimal place is Bern

(
1
2

)
. This is

a uniform r.v.

I All modern computer systems can generate an
almost-endless stream of uniform (pseudo)-random
variates, which can be used for generating samples of
other r.v.’s using transformation techniques.
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beta
A beta r.v. is parameterized by two continuous parameters,
α, β > 0. The scale factor for the density involves the
Gamma function.

fX (x) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−1 ∀x ∈ [0, 1]

There is a deep connection between the beta and binomial.
The formulæ for the densities are essentially the same; but
instead of describing the count, the beta describes the
probability.

I The beta is a good model for an unknown probability.

I The beta is also a good model for an unknown fraction.

I The uniform is a special case, beta(1, 1) ∼ U([0, 1]).
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Half-line Support

exponential

The limiting case of the geometric with p = λ/n and n→∞
is the exponential. Its distribution function is simply

FX (x) = 1− e−λx ∀x ≥ 0

Differentiating, we get the density.

fX (x) = λe−λx ∀x ≥ 0

I Note that the mode of an exponential r.v. is zero.

I The minimum of n exp(λ) r.v.’s is exp(nλ)

I The interval between arrivals of a Poisson process is
exponential.
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Half-line Support

One can arrive at a Gamma r.v. by several routes. We will
approach it as a sum of exponentials.

Gamma
Since the characteristic function of Y ∼ exp(λ) is

φY (t) =
(
1− it

λ

)−1
(prove), the characteristic function of

the sum of k exponential r.v.’s is

φY1+...+Yk
(t) =

(
1− it

λ

)−k
. We can apply the Fourier

transform to get the density of X = Y1 + . . .+ Yk ,

fX (x) =
λk

Γ(k)
xk−1e−λx ∀x ≥ 0

I This is also a sum of squared normals (Chi-squared)

I and a natural description for the space of random
positive-definite matrices (Wishart)
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Unbounded Support

The most important distribution for X ∈ R is the normal or
Gaussian distribution, X ∼ N

(
µ, σ2

)
with µ the mean and

σ2 the variance (σ is the standard deviation).

fX (x) = 1
σ
√

2π
e−

1
2 ( x−µ

σ )
2

FX (x) , Φ(
x − µ
σ

) = 1
2 + 1

2 erf

(
x − µ
σ
√

2

)
qp (FX ) = µ+ σΦ−1(p) = µ+ σ

√
2 erf−1 (2p − 1)

φX (t) = e iµt−
1
2σ

2t2

Normal density
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Unbounded Support

Not every r.v. has a finite variance. The simplest example of
an unbounded r.v. without a finite variance is the Cauchy.

Cauchy

The standard version1 of the Cauchy has the density

fX (x) =
1

π

1

1 + x2

whose graph looks like that of a normal; but statistically it is
nothing like a normal.

I The standard Cauchy has the characteristic function
φX (t) = e−|t|.

I The ratio of two normal r.v.’s is a Cauchy.

1Any affine transformation of a Cauchy is still a Cauchy.
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Unbounded Support

(Lévy’s) stable

The Cauchy is a special case of the (Lévy’s) stable family.
Not only do stable r.v.’s lack a variance, but (excepting the
Cauchy) they also lack a tractable density.
The standard stable characteristic function is

φX (t) =

{
e−|t|

α(1−sgn(t)iβ tan(απ/2)) α 6= 1

e−|t|(1+sgn(t)iβ(2/π) log |t|) α = 1

for parameters 0 < α < 2 and −1 < β < 1.

I The Cauchy corresponds to α = 1 and β = 0

I β ≷ 0 allows for the density to by asymmetric.

I The limit α→ 2 is N (0, 2). The limit α→ 0 is
delta(0).
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Common Transforms

Pareto
A basis for the concept of power laws is a result about the
frequency of extreme events. This has at its heart a
(generalized) Pareto r.v. which is an exponential of an
exponential, log (1 + ξX ) ∼ exp (1/ξ).
The resulting distribution function is

FX (x) = 1− (1 + ξx)−1/ξ ∀

{
0 ≤ x ξ ≥ 0

0 ≤ x ≤ −1
ξ ξ < 0

I ξ is sometimes called the tail index

I for ξ = 0, the limit gives FX (x) = 1− e−x

I note that if U ∼ U ([0, 1]), then U−ξ−1
ξ ∼ Pareto(ξ)
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Common Transforms

The gamma is a reasonable model for an unknown scale
factor. But sometimes your application will call for dividing
rather than multiplying.

Reciprocal Gamma

It is a simple matter to evaluate the density of the reciprocal
of a gamma r.v.,

fX (x) =
λk

Γ(k)
x−1−ke−λ/x ∀x > 0

for parameters λ > 0 and k > 0.

I the reciprocal gamma comes up in Bayesian analysis

I it is a natural description for an unknown variance
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Common Transforms

Since most assets cannot become liabilities (their values
cannot be negative), the support for future asset values (or
prices) is R+ (or some subset). Furthermore, since holdings
values are usually price × quantity, nominal per-share prices
are rarely important. Hence a natural model for the future
value of an asset is a lognormal r.v.

lognormal

The logarithm of a lognormal r.v. is normal. It has a density

fX (x) =
1√

2πσ2

e−
log(x/µ)2

2σ2

x
∀x > 0

for parameters µ > 0 and σ > 0.

I Note that, unlike the normal, the expected value of a

lognormal r.v. involves both parameters: EX = µe
1
2σ

2

.
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Common Transforms

The gamma and reciprocal gamma can be combined into a
generalized family for r.v.’s with half-line support.

Generalized Inverse Gaussian

fX (x) =
χ−λ

(√
χψ
)λ

2Kλ
(√
χψ
) xλ−1e−

χ
2x
−ψx

2

for x > 0, where K·(·) is Bessel’s function of the third kind.

I There are several versions of parameterization in use

I Other members of this family include the inverse
Gaussian and the reciprocal inverse Gaussian

I The name relates to the first passage time of a
Brownian motion through a boundary
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Mixtures

Conditioning generally reduces entropy. Mixing has the
opposite effect. This is useful if you want to moderate
overconfidence or statistical hubris.
Say X is the parameteric r.v. we are interested in.

1. Concatenate it with some function of the parameters to
make a multivariate r.v. X++Θ.

2. Specify the marginal density of Θ and the conditional
density of X |Θ.

3. Integrate over the support of Θ to get the marginal
density of X , the new mixture.

fX++Θ(x++θ) = fX |Θ(x ; θ)fΘ(θ)

fX (x) =

∫
Ω(Θ)

fX |Θ(x ; θ)fΘ(θ) dθ
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Common Mixtures

If you are working with an r.v. that is Poisson, but you only
have an estimate for the parameter, one approach is to say
that the true parameter is a draw of a gamma r.v. which you
can confidently characterize.

negative binomial

This is called the gamma-Poisson mixture, and the result is
called the negative binomial. The hierarchical model is

X |λ ∼ Poisson(λ)

λ ∼ Gamma

(
k,

p

1− p

)
with the result

PX{i} =
Γ(i + k)

i !Γ(k)
pk(1− p)i ∀i ∈ {0, 1, . . .}
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Common Mixtures

Student’s-t is a symmetric r.v. which exhibits leptokurtosis.

(Gosset’s) Student’s-t

Consider a normal r.v. with an unknown variance close to
one. If the variance is a draw from an reciprocal gamma,

X
∣∣σ2 ∼ N

(
0, σ2

)
σ2 ∼ Gamma−1

(ν
2
,
ν

2

)
the resulting unconditioned density is

fX (x) =
Γ
(
ν+1

2

)
Γ
(
ν
2

)
Γ
(

1
2

) 1√
ν

(
1 +

x2

ν

)− ν+1
2

I ν = 1 is a Cauchy

I The limit ν →∞ is a normal
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The version of the Student’s-t above has a variance for
ν > 2, but it is not unity.

Standardized Student’s-t
The standardized version is useful for fitting residuals. It has
the density

fX (x) =
Γ
(
ν+1

2

)
Γ
(
ν
2

)
Γ
(

1
2

) 1√
ν − 2

(
1 +

x2

ν − 2

)− ν+1
2

I Note that E eX →∞ for any finite ν. This would seem
to be a problem for a model of log-returns!

I For historical reasons, if the parameter ν > 0 is an
integer, it is termed the degrees of freedom.



Probability
Distributions

John Dodson

Outline

Random Variables

Characterizations

Taxonomy

Finite Support

Countable Support

Interval Support

Half-line Support

Unbounded
Support

Common
Transforms

Common Mixtures

Non-Parametric
Distributions

Multivariate
Distributions

Common Mixtures

The Student’s-t is part of the generalized hyperbolic family,
which is based on a normal mean–generalized inverse
Gaussian variance mixture (with λ = −ν/2).

Normal-reciprocal inverse Gaussian (NRIG)

The symmetric generalized hyperbolic r.v. with λ = 1
2 , is

particularly useful. The standardized version has the density

fX (x) =
1

π
eg
√

1 + g K0

(√
g2 + (1 + g)x2

)
in the Babbs representation for shape parameter g ≥ 0. It is
not obvious, but the limit g →∞ corresponds to the
normal.

I As a model for the residuals of the log-returns for asset
prices, this is superior to the Student’s-t example from
the text because E eX is finite(!)
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Common Mixtures

We can use the NRIG to illustrate the effects of scaling and
mixing on entropy.

HX = EHX |Θ(Θ) + HΘ = HaX − log |a|

0.0 0.5 1.0 1.5 2.0 2.5 3.0
g

1.15

1.20

1.25

1.30

1.35

1.40

1.45
nats

Entropy for a standard NRIG & a standard Normal

I A normal with the same entropy as an NRIG would
have a standard deviation up to about 24% smaller.
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Non-Parametric Distributions

A modern trend in statistics is to move away from
parametric descriptions towards non-parametric descriptions.

empirical

The most natural non-parametric description of a r.v. X
based on a dataset {x1, x2, . . . , xn} is the empirical r.v.

fX (x) =
1

n

n∑
i=1

δ (x − xi )

FX (x) =
1

n

n∑
i=1

H (x − xi )

I This can be regularized by replacing the Dirac deltas by
normal densities with sufficiently small variances, which
is termed kernel smoothing.
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Multivariate Distributions

Many of the univariate distributions can be generalized to a
vector-valued sample space

I stable family and related, including the normal, Cauchy,
Student’s-t, and generalized hyperbolic

I discrete and empirical

I uniform

For the uniform, this is just a matter of defining the support
in Rn and normalizing appropriately. For the others, often
the replacement(

X − µ
σ

)2

→ (X − µ)′Σ−1(X − µ)

and normalization is all that is required to lift the sample
space from R to RN .

I A multivariate density can always be used as a basis for
a copula.
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