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The Goal of Estimation

The goal of estimation is to assign numerical values to the
parameters of a probability model.

Considerations
There are several risks to consider:

I What if the model is mis-specified?

I What if the data are corrupt?

These are addressed under the subject of robust statistics,
which we will briefly introduce.
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Sample

In classical statistics, the term sample has two related
meanings

I an (unordered) set of N values drawn from the sample
space of some random variable X , {x1, x2, . . . , xN}

I a random variable consisting of N (independent) copies
X1, . . . ,XN of some random variable Xi ∼ X ∀i .

You can think of the former as a realization of the latter.
We can characterize the latter, which we will denote
hereafter by Y (N) , (X1, . . . ,XN), as a random variable with

fY (N)(Y ) = fX (X1) · · · fX (XN)

because we have assumed that the draws are independent.
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Sufficient Statistic

The characterization of the sample Y (N) can often be
expressed as the characterization of a collection of partial
results, T = T (X1, . . . ,XN ;N), called sufficient statistics.

Important Example

Say X ∼ N (µ, σ2) and we have a sample
Y (N) = (X1, . . . ,XN). The density function of the sample is

fY (N)(y) = (2πσ2)−N/2e
−1
2σ2

∑N
i=1(xi−µ)2

The form of this suggests T = (
∑

Xi ,
∑

X 2
i ;N), which

yields

fT (t) =

(
Nt2 − t2

1

)(N−3)/2

NN/2−12N/2Γ
(

1
2

)
Γ
(
N−1

2

)
· exp

(
1

σ2

( t2

N
− 2

t1

N
µ+ µ2

)
+ log σ2

)−N/2

(∗)
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Estimator

An estimator is a function of a sample.

I If the sample is considered to be random, the value of
an estimator is a random variable subject to
characterization.

I If the estimator is applied to an actual sample,
consisting of draws from the sample space, the value is
non-random and is called an estimate.

Parameter Estimator
We will be mostly interested in estimating the parameters of
a characterization, which we will denote generically by θ. For
a univariate normal, for example, θ =

(
µ, σ2

)′
.

We will denote the parameter estimator by θ̂
(
Y (N)

)
where

Y (N) = (X1, . . . ,XN) is the sample represented by N
independent copies of the random variable X with a
characterization parameterized by θ.
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Quadratic Loss

Since θ̂
(
Y (N)

)
is a random variable, it is natural to explore

its location and dispersion.

I In particular, we are interested in how far it can diverge
from the (unknown) true value, θ.

I So we introduce a norm with respect to some positive
definite metric Q, such that ‖v‖2 = v ′Qv for any v in
the sample space of θ.

I Loss is the random variable ‖θ̂ − θ‖2.

I Bias is the (unknown) value ‖E θ̂ − θ‖.

I Inefficiency is the value
√

E ‖θ̂ − E θ̂‖2.

There is a trade-off between bias and inefficiency. In fact,

E Loss = Bias2 + Inef2 (prove)
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Method of Moments

One classical method for estimating the parameters of a
random variable from a sample is to identify low-order
sample moments with the corresponding “population”
moments of the random variable.

I sample mean x̄ , 1
N

∑N
i=1 xi

I sample variance 1
N−1

∑N
i=1 (xi − x̄)2

Moment Matching

If a random variable X has a parametric characterization
with only one or two parameters, θ = (θ1, θ2)′, it is likely
that a system of the formEX |θ̂

(
Y (N)

)
= 1

N

∑N
i=1 Xi

varX |θ̂
(
Y (N)

)
= 1

N−1

∑N
i=1 X

2
i −

1
N(N−1)

(∑N
i=1 Xi

)2

implicitly defines a unique solution for θ̂
(
Y (N)

)
.



Estimators

John Dodson

Outline

Motivation

Sample

Sufficient Statistic

Estimator

Loss

Method of Moments

Maximum
Likelihood
Estimator

Standard Error

Robustness

M-Estimators

Maximum Likelihood Estimator

Since we have the distribution of the sample, perhaps in
terms of sufficient statistics, it is natural to define an
estimator for the parameters as the value of the parameters
such that the sample observed is “most likely”. That is,

θ̂(y) = arg max
θ

fY (N)|θ(y) or

= arg max
θ

fT |θ(t)

where the sample is y = (x1, . . . , xN) or
t = T (x1, . . . , xN ;N).

Important Example

Consider the univariate normal from above. In terms of the
sufficient statistics, the MLE (based on (∗)) is(

µ̂

σ̂2

)
= arg min

(µ,σ2)′

1

σ2

( t2

N
− 2

t1

N
µ+ µ2

)
+ log σ2
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Maximum Likelihood Estimator

Important Example

The solution to this (the MLE for a univariate normal) is

µ̂ =
t1

N
=

x1

1′1

σ̂2 =
t2

N
−
( t1

N

)2

=
xx ′

1′1
− 1′x ′x1

1′11′1

This result extends to the multivariate case X ∈ RM

whereby x has M rows and N columns.

Bias
We can see that the MLE is (slightly) biased.

E µ̂ = µ

E σ̂2 =
N − 1

N
σ2 (prove)
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Maximum Likelihood Estimator
Elliptical random variables

if the density of an r.v. X ∈ RM can be written in the form

fX |µ,Σ(x) = g
(
Ma2(x , µ,Σ)

)√
|Σ−1|

for some function g(·) where

Ma(x , µ,Σ) =

√
(x − µ)′Σ−1 (x − µ)

is the Mahalanobis distance, then the MLE based on a
sample {x1, . . . , xN} solves the system

µ̂ =
N∑
i=1

wi∑
j wj

xi Σ̂ =
N∑
i=1

wi

N
(xi − µ̂) (xi − µ̂)′

with wi =
−2g ′

(
Ma2

(
xi , µ̂, Σ̂

))
g
(

Ma2
(
xi , µ̂, Σ̂

)) ∀i = 1, . . . ,N
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Maximum Likelihood Estimator
Minimum Entropy

If the observations are i.i.d., the likelihood of the sample is
the the product of the likelihood of each observation. Taking
logs, we see that the MLE is

θ̂
(
Y (N)

)
= arg max

θ

N∑
i=1

log fX |θ(xi )

Interpreting the sum in terms of the sample mean and taking
the sample size limit,

θMLE , limN→∞θ̂
(
Y (N)

)
= arg min

θ
HX |θ

in terms of the entropy of an observation. That is, this
estimator transfers as much information as possible from the
sample to the characterization.

I This is why correct model specifications are important.
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Fisher Information

In general we cannot determine a parametric characterization
of an estimator as a random variable. An application of the
Central Limit Theorem gives us a useful approximation.

lim
N→∞

√
N
(
θ̂
(
Y (N)

)
− θ
)
∼ N

(
0, I−1

X |θ

)
where I is the Fisher Information matrix

IX |θ = cov
∂

∂θ′
log fX |θ(X )

= −E
∂2

∂θ ∂θ′
log fX |θ(X )

Important Example

For the univariate normal, this evaluates to

IX |(µ,σ2)′ =

(
1
σ2 0
0 1

2σ4

)
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Cramér-Rao Bound

The Cramér-Rao Bound gives us a limit on the resolution of
an estimator for a finite sample.

cov θ̂
(
Y (N)

)
≥ ∂ E θ̂

∂θ

I−1
X |θ

N

∂ E θ̂′

∂θ′

which is attained if the estimator is efficient.

Unbiased Estimators
Note that if E θ̂ ≈ θ, which is exactly true for unbiased
estimator and approximately true for most estimators with
sufficiently large N, the result simplifies to

cov θ̂
(
Y (N)

)
≥

I−1
X |θ

N
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Robustness

Non-Parametric Estimators
The term robustness in statistics can sometimes refer to
non-parametric techniques that do not require assumptions
about the characterization of the random variables involved.

I Such techniques usually lean on the Law of Large
Numbers, and hence require very large samples to be
effective.

Robust Estimators
A more precise meaning has evolved that focuses on
estimators that may be based on parametric
characterizations, but which can produce reasonable results
for data that does not come from that class of
characterizations or stress-test distributions.

I We can make this desire concrete in term of the the
influence function associated with an estimator.
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Robust Estimators

Influence Function
Wwe have discussed estimators as functions of samples. If
instead we consider the estimator as a functional of the
density from which observations are drawn, we can consider
its (functional) derivative with respect to an infinitesimal
perturbation in the density given by

fX (x)→ (1− ε)fX (x) + εδ(x − y)

Thus, with θ̃ the functional induced by the estimator θ̂,

IF
[
y , fX , θ̂

]
= lim

ε→0

θ̃ [(1− ε)fX (x) + εδ(x − y)]− θ̃ [fX ]

ε

If this derivative is bounded for all possible displacements, y ,
we say the estimator is robust.



Estimators

John Dodson

Outline

Motivation

Sample

Sufficient Statistic

Estimator

Loss

Method of Moments

Maximum
Likelihood
Estimator

Standard Error

Robustness

M-Estimators

Robust Estimators

Robustness of the MLE
For the maximum likelihood estimator, the influence function
turns out to be proportional to

IF
[
y , fX , θ̂

]
∝
∂ log fX |θ(y)

∂θ

∣∣∣∣
θ=θ̂

For some characterizations, the parameter MLE’s are robust.
For some they are not.

I for X ∼ N (µ,Σ), µ̂ and Σ̂ are not robust

I for X ∼ Cauchy(µ,Σ), they are

Even for the empirical characterization, the influence
functions for the sample mean and the sample covariance are
not bounded; therefore these sample estimators are never
robust.
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M-Estimators

Location and Dispersion

Recall the general elliptic location and dispersion MLE’s,

µ̂ =
N∑
i=1

wi∑
j wj

xi

Σ̂ =
N∑
i=1

wi

N
(xi − µ̂) (xi − µ̂)′ with

wi , h
(

Ma2
(
xi , µ̂, Σ̂

))
∀i = 1, . . . ,N

where the function h(·) is the value of a particular functional
on the density. The idea with M-estimators is to choose h(·)
exogenously in order to bound the influence function by
design.
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M-Estimators

We know that h(·) = 1 corresponds to the MLE for normals
and also to the sample estimators, which do not have
bounded influence functions. A weighting function that goes
to zero for large arguments is more likely to be robust. Some
examples include

I Trimmed estimators, for which

h(z) =

{
1 z < z0 = Qχ2

dim X
(p)

0 otherwise

I Cauchy estimators for which h(z) = 1+dimX
1+z

I Schemes such as Huber’s or Hampel’s for which

h(z) =

1 z < z0 =
(√

2 +
√

dimX
)2

√
z0
z e
− (
√
z−√z0)2

2b2 otherwise

These estimators can be evaluated numerically by iterating
to the fixed point.
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