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Invariants

We are generally working with financial timeseries data when
calibrating models for the future value of financial variables
such as the mark-to-market profit/loss on an asset holding.

I In some cases, such as equity shares, this may mean
working with market prices (adjusted for dividends and
splits).

I In other cases, such as for bonds or derivatives, it may
mean working with derived quantities like yield or
implied volatility.

Invariants
If we expect today that the meaning of a financial quantity
of interest will remain uniform for the foreseeable future, we
term it an invariant quantity. For example, the price or yield
on a particular derivative or bond is not an invariant because
the instrument will expire or mature on a known date.
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Indexes, Generics, & Synthetics

The challenge of identifying invariants for important classes
of financial variables is addressed variously through indexes,
synthetics, and generics.

I The S&P 500 equity index purports to represent the
performance of typical large-cap U. S. listed equity
securities.

I The Fed’s CMT indexes purport to represent the
performances of typical nominal U. S. Treasury bonds
of particular tenors.

I Bloomberg futures generics represent the performances
of the 1st, 2nd, etc. contract of a particular futures
product.

I The CBOE VIX index purports to represent the
performance of a delta-hedged position in one-month
S&P 500 index options.
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Invariants

Investibility & Relevance of Invariants

If we intend to use an invariant as a proxy for an actual asset,
it is important to think carefully about how the performance
of the proxy can differ from the performance of the asset.

I The S&P 500 is an investible index whose performance
can be replicated by an instantaneously fixed portfolio
of equity shares, its performance is influenced by its
dynamic composition and the dynamic correlation
between constituents, which is obviously not relevant
for individual equities.

I Other indexes, such as LIBOR (London interbank
offered rate) or OIS (Federal Funds rate overnight index
swap), are technically investible, but only by the
treasury departments of banks; in particular they are
not investible to broker-dealers.
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Seasonality

Some financial timeseries exhibit predictable patterns in
time, or seasonality.

I A futures generic must roll whenever new contracts are
issued. The actual profit/loss from rolling over a futures
position is difficult to predict, and the generic makes no
attempt at all.

I For timeseries analysis purposes, you should omit roll
dates from generics for your analysis.

I There may be predictable events, such as earnings
announcements or the seasonal consumption patterns of
certain commodities, that should be modeled as
regimes.

I This is a specialized topic in econometrics that we will
not cover.
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Innovations

We generally only care about the most recent level for a risk
factor after our timeseries analysis is finished and we are
looking at the loss distribution for a particular portfolio. For
the analysis, we are more interested in the periodic
innovations of the risk factor, such as the log-returns or
simple differences.

I You can think of this as the difference operator applied
to the index or its (natural) logarithm, Xt , ∇ log St .

Drift
The conditional expected value E [∇ log St |Ft−1] of the log
of an index is termed the index drift µt .

Volatility

The conditional standard deviation
√

var [∇ log St |Ft−1] is
termed the index volatility σt .

Note that the drift and volatility are Ft−1-measurable.
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ARMA for Drift

White noise is a collection of i.i.d. r.v.’s Zt with zero mean
and finite variance σ2t . With Xt = µt + εt = µt + σtZt an
innovation of an invariant, we call εt the residual.

Autoregressive Moving Average

An ARMA(p, q) process for the drift can be expressed as

µt = φ0 +

p∑
i=1

φiXt−i +

q∑
j=1

θjεt−j

for parameters φ0, φ1, . . . , φp, θ1, . . . , θq.

I AR(1) is a simple model for mean reversion for the
innovations around a long-run level φ0/(1− φ1).

I The exponentially-weighted moving average EWMA can
be represented by a version of ARMA:

µt = µt−1 +
(

1− 2−1/nhalf-life
)
εt−1
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GARCH for Volatility

For financial data there is little to be gained in modeling
drifts of timeseries data, because typically |Xt | � µt .

I Furthermore, if Xt is a log-return, the drift probably
ought to include a Jensen term like −1

2σ
2
t which

certainly does not fit into the ARMA form.

Generalized Autoregressive Conditional
Heteroskedasticity

A GARCH(p, q) process for the conditional variance can be
expressed as

σ2t = α0 +

p∑
i=1

αiε
2
t−i +

q∑
j=1

βjσ
2
t−j

for non-negative parameters α0, α1, . . . , αp, β1, . . . , βq.
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GARCH for Volatility

Standardized Residuals
One application of GARCH models is to extract i.i.d. samples
from timeseries. We define the standardized residuals as

Zt =
Xt − µt
σt

To the extent that the GARCH model is correct, these are
strict white noise.

GARCH(1,1)

By far the most common implementation of this model is
GARCH(1,1). An important result about this model is that
the unconditional variance is

σ2 , var [Xt ] =
α0

1− α1 − β1

as long as α1 + β1 < 1.
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Estimating GARCH

Let us continue to focus on GARCH(1,1). The principal
technique for estimating the parameters of a GARCH process
is maximum likelihood, but with several caveats:

I We do not know the marginal densities of the residuals
and they are not identical

I We do not know know ε0 or σ0 (assume t = 1 is the
first observed innovation)

I While we may assume that they are i.i.d., we may not
know the exact density of the standardized residual fZ (·)

We address these through the quasi-MLE, in which we note
that the multivariate density is the product of the conditional
densities, and we assume that the residuals are normal:

log fε1,ε2,...,εn|ε0,σ0 (ε1, ε2, . . . , εn) = −1

2

n∑
t=1

log
(
2πσ2t

)
+
ε2t
σ2t
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Estimating GARCH

Variance Targeting

Assuming that the unconditional variance of the innovations
exists, it is advisable to set the intercept based on the
sample variance.

α0 = σ̂2 (1− α1 − β1)

Then you are only using the QMLE to estimate α1 and β1.
N.B.: You should probably put a lower bound on α1 in this
case, otherwise the β1 could be degenerate.

Initialization
Assuming t = 1 is your first innovation, we need a way of
determining σ21 in terms of the parameters. That means you
need to choose values for ε20 and σ20. One choice is to take
both to be σ̂2. In combination with variance targeting, this
means σ21 = σ̂2.
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Forecasting GARCH

In terms of forecasting, we already have σ2n+1. Say we are
interested in En

[
σ2n+2

]
(the subscript on the expectation

represents the filtration), we can write

σ2n+2 = σ2 (1− α1 − β1) + σ2n+1

(
α1Z

2
n+1 + β1

)
so because Zn+1 ∼ SWN(0, 1)

En

[
σ2n+2

]
= σ2n+1 (α1 + β1) + σ2 (1− α1 − β1)

Iterating this, we get the general result for integer m > 0,

En

[
σ2n+m

]
= σ2n+1 (α1 + β1)m−1 + σ2

(
1− (α1 + β1)m−1

)

I The forecasts are a convex combination of the current
conditional variance σ2n+1 and the unconditional, or
long-run, variance σ2.
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