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Multivariate Random Variables

We are going to pick up where we left off last term. The
reading for this week (ch. 6) is long, but some of it should
be review. In particular we have already seen most of the
material in §6.1 on multivariate basics and §6.2 on variance
mixtures of normals

I multivariate distribution and density concepts

I Maronna’s M-estimator

I GIG-variance mixtures of normals (symmetric GH r.v.)

I affinity of conditional expectation with respect to
condition event for multi-normals
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Spherical Random Variables

It is helpful to build up a theory of multivariate random
variables from geometric principles. By definition, a spherical
random variable is distributionally invariant to rotations,

UX d
= X

where U is a square matrix representation of a rotation,
which means that U ′U = I .
Spherical random variables have two equivalent defining
properties,

a′X d
= ‖a‖X1

E e it
′X = ψ

(
t ′t
)

for vectors a and t. We term ψ(·) the characteristic
generator of X . We therefore write X ∼ Sd(ψ) to denote a
spherical random variable in d dimensions with characteristic
generator ψ(·).
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Elliptical Random Variables

An affine transformation of a spherical random variable is
termed an elliptical random variable.

X
d
= µ+ AY

where Y ∼ Sk(ψ) and A is a d × k matrix.
The distributional invariance of Y to rotations means that A
is generally redundant. All we need to characterize X is µ,
ψ(·), and Σ = AA′. But note that

Ed (µ,Σ, ψ(·))
d
= Ed (µ, cΣ, ψ(·/c))

for c > 0, so Σ may not necessarily be the covariance of X .

I Note that Σ need not be full rank. In this case, the
rank of Σ is at most d ∧ k .



Multivariate
Models

John Dodson

Multivariate
Random Variables

Spherical Random
Variables

Elliptical Random
Variables

Linear Factor
Models

Principal
Components

Elliptical Random Variables

Some Properties

Say X ∼ Ed (µ,Σ, ψ).

I linear combinations If B k × d and b k × 1 constants,
then

BX + b ∼ Ek

(
Bµ+ b,BΣB ′, ψ

)
I if Σ is full rank, then the non-negative scalar r.v.

R =
√

(X − µ)′Σ−1(X − µ)

is independent of S = Σ−1/2(X − µ)/R and S is
uniformly distributed on a unit sphere.

I convolutions If Y ∼ Ed(µ̃,Σ, ψ̃) independent of X ,
then

X + Y ∼ Ed

(
µ+ µ̃,Σ, ψ · ψ̃

)



Multivariate
Models

John Dodson

Multivariate
Random Variables

Spherical Random
Variables

Elliptical Random
Variables

Linear Factor
Models

Principal
Components

Linear Factor Models

If X is a d-dim random variable, and we can write

X = a + BF + ε

where F is a p-dim random vector with p < d and
cov F > 0, B is a d × p matrix, the entries of ε are zero
mean and uncorrelated, and cov (F , ε) = 0, we call F the
common factors and B the factor loadings.
We would consider this a model or approximation if d � p.
Sometimes we have an idea about what the factors or
loadings might be; they might even be observable.

I In macroeconomic factor models, we observe the
factors.

I In fundamental factor models, we observe the loadings.

I In statistical or latent factor models, we observe neither
the factors nor the loadings.
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Linear Factor Models

Capital Asset Pricing Model

CAPM for investments is an example of a macroeconomic
factor model. It is typically applied to traded equity
securities and a risk-free deposit as canonical “capital
assets”. We will take X to be the (simple) return on each
risky capital asset over some investment period.

If X is normal and investors allocate to maximize expected
exponential utility, then we can express the equilibrium
solution as a single-factor model where F is the return on a
broad index of risky capital assets.
The factor loadings Bi can be determined by regression, and
are termed the asset “betas”.
The intercept components turn out to be ai = rτ (1− Bi )
where r is the return rate on the risk-free asset.
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Linear Factor Models

Fundamental Model
Sometimes it is useful to impose a classification scheme on
the components of X , for example an industry classification
scheme or a geographic or demographic scheme. In this
case, we generally know the non-zero loadings in B, but we
do not observe the factors F .

In this case, we can estimate timeseries for F in terms of
timeseries for X according to ordinary least squares
regression

F̂OLS
t =

(
B ′B

)−1
B ′Xt

if the variance of the residuals is the same (homoscedastic)
or generalized least squares regression

F̂GLS
t =

(
B ′Υ−1B

)−1
B ′Υ−1Xt

if not.
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Principal Components

Principal components analysis is inspired by the concept of a
statistical factor model, but since it is entirely endogenous it
is really a separate concept.
A covariance or correlation matrix Σ has the property of
being positive semi-definite, which means that x ′Σx ≥ 0 for
all compatible vectors x . Therefore, by the spectral
decomposition theorem, we can write

Σ = ΓΛΓ′

where Λ is a diagonal matrix with non-negative entries (the
eigenvalues) and Γ is a square matrix whose columns (the
eigenvectors) are orthonormal, which means ΓΓ′ = I .
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Principal Component Analysis

If Σ has full rank d , all of the eigenvalues will be positive.
The potential for dimension reduction comes from
partitioning the model into the largest k < d eignevalues
and eigenvectors, and relegating the remaining d − k to the
residual.

Principal Components as Factors

Let d × 1 Y = Γ′(X − µ) where µ is the mean of X .
Partition Y and Γ into k × 1 Y1 and (d − k)× 1 Y2 and
d × k Γ1 and d × (d − k) Γ2 and let ε = Γ2Y2, then

X = µ+ Γ1Y1 + ε

and ε almost satisfies the assumptions for a linear factor
model.
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