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Review: Random Variables on R+

The most important parametric random variable with
half-line support is the Generalized Inverse Gaussian

Generalized Inverse Gaussian (GIG)

f (x) =
χ−λ

(√
χψ
)λ

2Kλ
(√
χψ
) xλ−1e−

χ
2x
−ψx

2

for x > 0, where Kλ(·) is modified Bessel function of the
second kind.

I This generalizes the Gamma and reciprocal Gamma

I There are several versions of parameterization in use

I Other members of this family include the inverse
Gaussian and the reciprocal inverse Gaussian

I The name relates to the first passage time of a
Brownian motion through a boundary
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We saw last semester that conditioning generally reduces
entropy. Mixing has the opposite effect. This is useful if you
want to moderate statistical hubris.
Say X is the parametric r.v. we are interested in.

1. Concatenate it with some function of the parameters to
make a multivariate r.v. X++Θ.

2. Specify the marginal density of Θ and the conditional
density of X |Θ.

3. Integrate over the support of Θ to get the marginal
density of X , the new mixture.

fX++Θ(x++θ) = fX |Θ(x ; θ)fΘ(θ)

=⇒ fX (x) =

∫
Ω(Θ)

fX |Θ(x ; θ)fΘ(θ) dθ



Copulas and
Dependence

John Dodson

GIG

Mixtures

Copulas

Concordance

Normal Mixture
Copulas

Archimedean
Copulas

Mixtures

Student’s-t is a symmetric r.v. which exhibits leptokurtosis.

(Gosset’s) Student’s-t

Consider a normal r.v. with an unknown variance close to
one. If the variance is a draw from an reciprocal Gamma,

X
∣∣σ2 ∼ N

(
0, σ2

)
σ2 ∼ Gamma−1

(ν
2
,
ν

2

)
the resulting unconditioned density is

fX (x) =
Γ
(
ν+1

2

)
Γ
(
ν
2

)
Γ
(

1
2

) 1√
ν

(
1 +

x2

ν

)− ν+1
2

I The version with ν = 1 is the Cauchy

I The limit ν →∞ is a normal
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The version of the Student’s-t above has a variance for
ν > 2, but it is not unity.

Standardized Student’s-t
The standardized version can be useful for fitting residuals*.
It has the density

fX (x) =
Γ
(
ν+1

2

)
Γ
(
ν
2

)
Γ
(

1
2

) 1√
ν − 2

(
1 +

x2

ν − 2

)− ν+1
2

I *Note that E eX →∞ for any finite ν so Student’s-t
cannot be used with log-returns of asset prices.

I For historical reasons, if the parameter ν is an integer,
it is termed the degrees of freedom.
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The generalized hyperbolic family is a normal mean / GIG
variance mixture. The Student’s-t is a special case (with
λ = −ν/2).

Normal / reciprocal inverse Gaussian (NRIG)

Another useful GH is the symmetric Normal / reciprocal
inverse Gaussian mixture (with λ = 1

2 ). The standardized
version has the density

fX (x) =
1

π
eg
√

1 + g K0

(√
g2 + (1 + g)x2

)
for shape parameter g ≥ 0. It is not obvious, but the limit
g →∞ corresponds to the normal.

I As a model for the residuals of the log-returns of asset
prices, this is superior to the Student’s-t example from
the text because E eX is finite.
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We can use the NRIG to illustrate the effects of scaling and
mixing on entropy.

HX =
(mixing)

EHX |Θ(Θ) + HΘ =
(scaling)

HaX − log |a|
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NRIG relative to a Gaussian for fixed entropy

I The leptokurtosis of the NRIG allows the standard
deviation to be up to almost 20% lower
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Multivariate Extensions

Many (univariate) distributions on the real line can be
generalized to (multivariate) random variables on a vector
space

I the normal

I Cauchy, Student’s-t

I symmetric generalized hyperbolic

Often the replacement(
X − µ
σ

)2

→ (X − µ)′Σ−1(X − µ)

and normalization is all that is required to lift the sample
space from R to Rd .

I This is a rich source for elliptical random variables
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Parametric multivariate random variables involve at least one
class of univariate random variable in the form of the
marginals for the components. But it is also clear that the
characterization of the original multivariate r.v. is not simply
a collection of these marginal characterizations. There is a
structure, with its own parameters, that connects them
together.

I This is the copula.

For me, this is the prototypical example; and multivariate
random variables are a rich source for parametric copulas.
But it is not the only source. In fact, any random variable
whose sample space is a unit hypercube with standard
uniform margins is a copula.
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Sklar’s Theorem

To the extent that the joint density is not just a product of
the marginal densities, there is dependence.

Factorization
This ratio can be expressed as

c (FX1(x1),FX2(x2), . . .) ,
f(X1,X2,...)(x1, x2, . . .)

fX1(x1)fX2(x2) · · ·

Copula

Sklar’s theorem says this is always possible. More generally,
c = fU : [0, 1]d 7→ R+ is a density function that characterizes
a new random variable, U, that encapsulates the dependence
structure of X .

Note that independence means c ≡ 1
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Normal (Gaussian) Copula

When dependence can be entirely described by correlation,
the Gaussian copula can be appropriate. For d = 2,

c(u) =
1√

1− ρ2
exp

[
−ρ

1− ρ2

(
ρ erfc−1(2u1)2 · · ·

+ ρ erfc−1(2u2)2 − 2 erfc−1(2u1) erfc−1(2u2)
)]

0.0

0.5

1.0

0.0

0.5

1.0
0

1

2

Gaussian copula density for ρ = 1
2
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Tail Dependence

Upper & Lower Tail Dependence

Tail dependence is a pair-wise measure of the concordance of
extreme outcomes.

λU = lim
p↑1

P {X > F←X (p)|Y > F←Y (p)}

λL = lim
p↓0

P {X ≤ F←X (p)|Y ≤ F←Y (p)}

The normal copula fails to exhibit tail dependence: extreme
outcomes are essentially independent.

This is a problem, because in practice an extreme outcome
in one component often acts to cause extreme outcomes in
other components. Developing practical alternatives that
include this contagion effect is an active area of research.
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Measures of Concordance

Several measures of concordance have been developed.
Their definitions are motivated by the properties of their
estimators, which we will not discuss just yet. Each ranges
from −1 to 1, with 0 for independence. In order of
generality, we have

1. Pearson’s rho. This is the classical linear correlation
measure cov(X ,Y )/

√
varX varY .

2. Spearman’s rho. This is linear correlation applied to the
grades, FX (X ). It is a simple measure of dependence
that is not sensitive to margins.

3. Kendall’s tau. This is based strictly on the rank order of
pairs of observations of pairs of components. It has
useful theoretical and statistical properties.

N.B.: While independence implies zero concordance (under
any of these definitions), zero concordance does not imply
independence.
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Kendall’s tau

Kendall’s tau can be defined as

τ = 4 EC (U1,U2)− 1

where C is the distribution function characterizing the
copula of X . It is the probability of concordance minus the
probability of discordance for two independent draws of X .

Relationship with other measures

In general Spearman’s rho is bounded by

3|τ | − 1

2
sgn τ &

1 + 2|τ | − τ2

2
sgn τ

For a Gaussian copula, Pearson’s rho is

ρ = sin
(
π
2 τ
)

We use this to define pseudo-correlation for any elliptical r.v..
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Normal Mixture Copulas

A normal mixture copula is simply the copula from a normal
mixture multivariate random variable. The elliptical copula is
an important subclass.

Elliptical Copula

An elliptical random variable is described by a mean vector,
a dispersion matrix, and a characteristic generator function.
It should be clear that the mean vector has no role in the
copula. It should also be clear that the diagonal entries of
the dispersion matrix also do not play a role.

Generally, an elliptical copula is parameterized by a
semi-definite matrix with unit diagonals, which describe
pair-wise dependence, and one or several shape parameters
related to the characteristic generator.
The Gaussian copula is an example. Another important
example is the tν copula, which we will work with in this
week’s exercise.
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Archimedean Copulas

There are on the order of d2/2 parameters to estimate for
an elliptical copula. If you are dealing with a very large
dimension, such as in a retail or securitization context, you
either need a factor model to reduce the dimension or you
should consider an Archimedean copula.

Archimedean Copulas

An Archimedean copula is defined in terms of a generator, a
decreasing continuous function ψ : [0,∞) 7→ [0, 1] with
ψ(0) = 1 and limt→∞ ψ(t) = 0. The copula distribution is

C (u1, u2, . . . , ud) = ψ
(
ψ−1 (u1) + ψ−1 (u2) + · · ·+ ψ−1 (ud)

)
Three common single-parameter examples are the Gumbel,
Clayton, and Frank.
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