
Quantitative Risk Management
Spring Assignment
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February 7, 2018

This assignment is not a regular homework. It is worth half of the module grade for the spring term. Please share
your solution with me through Google Drive before midnight on Sunday, February 25.

Please write up your results into a report and submit a PDF version. (My edition of LibreOffice can recognize
most word processing formats; but sometimes the formatting, equations, and exhibits are altered or corrupted.) You
may be able to covert directly to PDF from your word processor or type setter, or you may be able to “print to PDF”
using a print driver.

You may discuss approaches to the problems with your classmates, but not share code or answers. I expect you to
be the sole author of your report and scripts. Cite your sources, including your classmates as appropriate.

Please remind yourself of the University’s definition of scholastic dishonesty.

Risk Parity
The Markowitz efficient frontier was immediately a compelling concept on the buy-side from its origins in 1952;
and it introduced the notions of passive investment and capitalization-weighted indexes, index tracking mutual funds,
and ultimately exchange-traded funds. But there has always been a tension between the equilibrium side and the
optimization side of Markowitz’ theory, because the optimization problem seems so intractable in practice.

Two generations later, in 1996, the concept we now know of as “risk parity” started to be popularized in this
environment. The idea here was to strip away the hard part of the optimization, the forecasting of relative returns, and
instead focus on diversification on its own merits.

In addition to improved econometrics, such as models for conditional heteroskedasticity and tail dependence in
asset returns, theoretical innovations that facilitated this development included a recognition that the Markowitz utility-
based risk measure (certainty-equivalent exponential utility) lacked some key features, including positive-homogeneity
and concavity which facilitate allocation by gradient and convex programming, that are offered by more modern
coherent risk measures such as expected shortfall.

The defining characteristic of a risk-parity allocation is that the marginal risk of each asset is identical.

Constructing an Expected Shortfall Risk Parity Portfolio
The goal of this project is to identify a risk-parity allocation of QQQ constituent stocks on January 19, 2018, based on
one-day 95% expected shortfall. Use the simulations based on the Student’s-t4 copula draws to measure this.

The marginal decomposition of expected shortfall based on simulations is quite easy: Say there are 10,000 sim-
ulations. For a given portfolio, you can easily calculate the net asset value in each simulation ω = 1, 2, . . .. And
that net asset value is simply a sum of (quantityi × pricei,ω) for each asset i = 1, 2, . . . , N . We can readily identify
the scenarios that correspond to the lowest 500 portfolio net asset value simulations. Call this set Ω. The expected
shortfall is the average loss in these 500 scenarios. This average is also the sum of the average loss of each asset in
these scenarios, 1

|Ω|
∑

ω∈Ω quantityi × lossi,ω .
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So, in principle you could identify a vector of (quantityi)i=1,...,N such that the average loss on each asset in the
set Ω is equal to some fixed value. The problem is, the set Ω also depends on that vector! So you need to search for a
joint solution such that the marginal expected shortfalls are equal and add up to the total expected shortfall.

The risk parity portfolio generally includes leverage: the weights in the portfolio will not add to one. To the extent
that the weights are less than one, there is a (risk-free) cash component. To the extent that the weights are greater than
one, some of the assets have been pledged as loan collateral. The cash position will effect the expected return, but let’s
assume that it does not affect the expected shortfall.

Problems
1. Calculate the one-day 95% expected shortfall on the QQQ creation unit portfolio as of January 19, 2018. This

will be our risk target, which we would like to allocate equally among the QQQ constituent stocks. It will also
seed our set Ω0 of loss scenarios1. (30 points)

2. Determine the weights of a portfolio such that average loss in Ω0 is equal for each constituent and sums to the
target from (1.). (30 points)

3. Re-calculate the expected shortfall and the loss scenarios Ω1, and scale the weights to equalize the expected
shortfall in Ω1 back to the target from (1.). Repeat (2.)–(3.). Does it seem to converge? (10 points)

4. If it converges, calculate the leverage of the resulting portfolio (net asset value long plus net asset value short
divided by net asset value) and list the holdings with the largest overweights and underweights relative to the
QQQ creation unit. (10 points)

Grading Rubric
Twenty out of one hundred points will be based on the follow criteria:

• You follow all of the instructions. (5 points)

• I can reproduce your results with the code and documentation you provide. (5 points)

• Your write-up is clear and professional and includes appropriate citations. (10 points)

Solution
I will present my solution as a narrative along with my Julia2 implementation.

Data Model
Please review the solution to the assignment from January 24, 2018, for notes and recommendations about the data
management for this project.

For our purposes, assume that we have a long-form (multi-key) table with the columns listed in Table 1 populated
with two years of daily data through January 19, 2018 related to the January 22, 2018 QQQ creation unit constituents.

We will collect results for the January 19, 2018 analysis in a wide-form table with columns listed in Table 2.

1The constituent scenarios are the same throughout.
2https://julialang.org/
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Ticker (key) exchange symbol
Date (key) trading session date
AdjClose close price, adjusted for corporate actions
PrevDate previous trading session date
PrevAdjClose previous adjusted close price
LogReturn daily log-return

Table 1: columns in the tser data frame

Ticker (key) exchange symbol
GARCHalpha GARCH(1,1) ARCH coefficient
GARCHbeta GARCH(1,1) GARCH coefficient
GARCHVar GARCH(1,1) conditional variance forecast
SampleVar sample variance
NRIGg symmetric NRIG shape parameter
AdjClose close price on January 19, 2018
CUQuantity QQQ creation unit share quantity for January 22, 2018
CUWeight QQQ creation unit fraction of net asset value
RPWeight risk parity portfolio weight
ActiveWeight risk parity portfolio weight relative to QQQ creation unit
MarginalES95 marginal risk for risk parity portfolio position

Table 2: columns in the rslts data frame

Econometrics
As in the previous exercise involving QQQ creation unit, we fit GARCH(1,1) with symmetric NRIG residuals to daily
log returns for each stock price timeseries and store results in the rslts table. Along the way, we store Gaussianized
residuals into a design matrix z, from which we estimate pseudo-correlations Ρ.

using DataFrames, Optim, SprAssign

wtser=sort!(unstack(tser,:Date,:Ticker,:LogReturn)) # cross-tabulation by date/ticker
wtser=delete!(wtser,:Date) # observations are assumed to be at a regular frequency
z=zeros(size(wtser,1),size(rslts,1)) # allocate for Gaussianized residuals
for i=1:size(rslts,1)

ticker=rslts[i,:Ticker]
ε=Array(wtser[ticker])
θmle=optimize(θ->H_GARCH(ε,GARCH(ε,θ)),[.1,.7]).minimizer # use variance targeting
(h,h1)=GARCH(ε,θmle,true)
x=ε./sqrt.(h)
gmle=optimize(g->H_NRIG(x,g),0.,4.).minimizer
z[:,i]=quan_Normal.(dist_NRIG.(x,gmle))
rslts[i,:GARCHalpha]=θmle[1]
rslts[i,:GARCHbeta]=θmle[2]
rslts[i,:GARCHVar]=h1
rslts[i,:SampleVar]=var(ε)
rslts[i,:NRIGg]=gmle

end
Σ=cov(z)
u=diag(Σ).ˆ(-1/2)
Ρ=Σ.*(u*u’) # pseudo-correlations
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Scenarios
As before, we generate ten thousand scenarios for each constituent stocks.

N=10_000
scen=exp.(

sqrt.(rslts[:GARCHVar]).*quan_NRIG.(
dist_t4.(chol(Ρ)’*randn(size(Ρ,1),N)./sqrt.(mean(randn(4,N).ˆ2,1))),
rslts[:NRIGg]

)
)

Note that we exponentiate the log-returns in the last step so that (simple-return) scenarios for a portfolio are simply
the dot product with the portfolio’s weights.

This scenario set remains fixed in the succeeding.

Risk Measurement
First, we calculate the 95% expected shortfall on the QQQ creation unit. This is simply the average of the worst 500
(div(N,20)) simulated losses.

CU_scen=scen’*rslts[:CUWeight]
tail95=sortperm(CU_scen[:])[1:div(N,20)]
CU_es95=1-mean(CU_scen[tail95])

resulting in 1.8% .
Since there are about 21 trading days per month, 95% one-day expected shortfall is approximately the size of the

loss one should expect if tomorrow were the worst day of the month and there were no material changes to the portfolio
in the meantime. That is a quantity that most investment managers understand intuitively3.

Portfolio Construction
We are looking for a portfolio that has the same expected shortfall, but with marginal risk evenly spread across each
holding. In my case, the investment universe has 96 stocks since we are missing historical data on eight of the 104
positions in the creation unit portfolio4.

M=96
RP_wgt=rslts[:CUWeight]
RP_scen=scen’*RP_wgt
for i=1:100

RP_wgt=CU_es95/M./(1-mean(scen[:,tail95],2))
RP_scen=scen’*RP_wgt
tail95=sortperm(RP_scen[:])[1:div(N,20)]

end

I tried one hundred and one thousand iterations and got similar results for fixed scenarios. I also got broadly similar
results with different versions of scenarios, but it is notable that with ten thousand scenarios the risk-parity goals is
not exactly achieved: With fixed scenarios there are probably several results that are very similar, and iterations cycle
between them.

Once we have settled on the risk parity loss scenarios, we can re-normalize the weights

RP_es95=sum(RP_wgt)-mean(RP_scen[tail95])
RP_wgt=RP_wgt*CU_es95/RP_es95

3Higher confidence levels are common in banking risk measurement, but those results tend to be more abstract since exposures and risk factors
can evolve significantly between exceedance experiences.

4Some of the stocks in our set are closely related, such as the two Alphabet (Google) share classes and the cluster of Liberty Media shares, so in
practice we may choose to divide the risk budget for a particular issuer between the various listed classes.

4



and record the results.

rslts[:RPWeight]=RP_wgt[:]
rslts[:ActiveWeight]=rslts[:RPWeight]-rslts[:CUWeight]
rslts[:MarginalES95]=(RP_wgt.*(1-mean(scen[:,tail95],2)))[:]

The result has only long positions, but the sum of the weights is about 108% so implicitly there is a short cash
position (a collateralized loan) of about 8% of the net asset value. In practice, one could scale down all of the positions
to manufacture a total weight of 100% and no cash position. The expected shortfall of this “fully-invested” portfolio
would be about 8% less than that of the creation unit, or about 1.7%.

Some results are presented in Table 3.

Weight Marginal
Ticker Risk Parity Creation Unit Active Risk
AAPL 1.32% 11.96% -10.64% 0.0181%
ADSK 0.64% 0.33% +0.31% 0.0190%
AMZN 1.19% 8.14% -6.95% 0.0181%

CMCSA 1.27% 2.59% -1.31% 0.0191%
COST 2.33% 1.10% +1.23% 0.0204%
CSCO 1.32% 2.66% -1.34% 0.0191%

FB 1.02% 5.64% -4.62% 0.0182%
FISV 1.63% 0.37% +1.26% 0.0194%

GOOG 1.32% 5.18% -3.86% 0.0182%
GOOGL 1.30% 4.45% -3.15% 0.0182%
ILMN 0.63% 0.46% +0.17% 0.0190%
INTC 1.30% 2.74% -1.44% 0.0191%
KHC 1.96% 1.27% +0.70% 0.0193%

LRCX 0.67% 0.44% +0.23% 0.0188%
MSFT 1.12% 9.06% -7.95% 0.0187%

MU 0.56% 0.64% -0.08% 0.0189%
NVDA 0.59% 1.82% -1.23% 0.0183%
SBUX 2.23% 1.14% +1.09% 0.0194%
STX 0.65% 0.20% +0.46% 0.0197%
WBA 1.79% 0.99% +0.80% 0.0201%

Table 3: selections from the 95% one-day expected shortfall risk parity solution for the QQQ constituents on Jan-
uary 19, 2018

Discussion
When I wrote this assignment, I thought it would be interesting to compare the risk parity portfolio to the creation unit
portfolio in terms of active weights, that is the risk parity weights minus the creation unit weights by position. This is
conventionally how one thinks about the source of outperformance and “tracking error” relative to a benchmark. But
there is nothing “active” in this construction: it is just two different versions of a passive portfolio. It is not even clear
which one should be the benchmark. In retrospect, I maybe should have asked for a discussion of the overweights and
underweights relative to an equal weight allocation.

The largest holdings in the creation unit are Apple, Alphabet (Google), Microsoft, and Amazon. All tech stocks.
Since the NASDAQ-100 index is so technology-focused, it is no surprise that these are somewhat higher contributors
to marginal risk than typical stocks, so their weights are significantly lower in the risk parity portfolio. In fact, the
largest holdings5 are Costco, Starbucks, and Kraft Heinz, none of which is significantly involved in selling technology.

5Although the combined weight of the two Alphabet (Google) share classes in fact makes it the largest holding in the risk parity portfolio.

5



Results are a little more interesting when applied to a wider class of investments, for example debt and equity,
because it leads to “passive” results involving substantial leverage.

Appendix: Julia definitions

module SprAssign

using SpecialFunctions, QuadGK

export GARCH, H_GARCH,
dens_NRIG, dist_NRIG, quan_NRIG, H_NRIG,
dist_Normal, quan_Normal,
dist_t4

"GARCH(1,1) conditional variance for θ=[α,β] or [ω,α,β] with an optional forecast"
function GARCH(ε,θ,forecastQ=false)

if (length(θ)==2)
θ=[var(ε)*(1-θ[1]-θ[2]);θ] # optional variance targeting

end
h=fill(NaN,length(ε)+1)
if length(θ)==3 && minimum(θ)>=0 && θ[2]+θ[3]<1

h[1]=θ[1]/(1-θ[2]-θ[3]) # initialize at unconditional variance
for i=2:length(h)

h[i]=θ[1]+θ[2]*ε[i-1]ˆ2+θ[3]*h[i-1]
end

end
if forecastQ

return (h[1:end-1],h[end])
else

return h[1:end-1]
end

end

"quasi-log-likelihood objective for GARCH"
function H_GARCH(ε,h)

return mean(log.(2π*h)+ε.ˆ2 ./h)/2
end

"distribution of a standard symmetric normal / reciprocal inverse Gaussian"
function dens_NRIG(x,g)

return exp(g)sqrt(1+g)besselk(0,sqrt(gˆ2+(1+g)*x.ˆ2))/π
end

"log-likelihood objective for standard symmetric NRIG shape parameter"
function H_NRIG(x,g)
# ’x’ is an array of samples

return -mean(log.(dens_NRIG.(x,g)))
end

"standard normal quantile function"
function quan_Normal(p)

return -sqrt(2)erfcinv(2p)
end

"NRIG distribution function"

6



function dist_NRIG(x,g)
return 1/2+quadgk(z->dens_NRIG(z,g),0,x)[1]

end

"distribution function of a standard Normal random variable"
function dist_Normal(x)

return erfc(-x/sqrt(2))/2
end

"distribution function of a conventional Student’s-t_4 random variable"
function dist_t4(x)

return (1+(x*(6+xˆ2))/((4+xˆ2)ˆ(3/2)))/2
end

"standard NRIG quantile function"
function quan_NRIG(p,g)
# Newton-Raphson method to invert dist_NRIG

x0=quan_Normal(p) # initial guess based on Normal result
x1=NaN
for n=1:20

d=dens_NRIG(x0,g)
x1=(p-1/2+quadgk(x->d-dens_NRIG(x,g),0,x0)[1])/d
if abs(x1-x0)<1e-12

break
end
x0=x1

end
return x1

end

end # SprAssign
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