
Quantitative Risk Management
Case for Week 4

John Dodson

September 26, 2018

Numerical Approach to Maximum Likelihood Estimation

Gradient descent (Newton) methods for minimizing a real-valued function are based on the observation that
if a function (in a single variable here) h(·) is sufficiently regular near its minimum u⋆, then h′(u⋆) = 0 and

h′(u) ≈ h′(u⋆) + h′′(u⋆)(u− u⋆)

for u near u⋆, so

u⋆ ≈ u− h′(u)

h′′(u)

If h′′(uj) > 0 for each j, then an iterative scheme

uj+1 = uj − γj
h′(uj)

h′′(uj)
for j = 1, 2, . . .

for 0 < γj ≤ 1, will converge to u⋆, as long as u0 is close enough to u⋆, and γj not too large.

Multivariate optimization

If u is an element of a vector space, the scheme generalizes to

uj+1 = uj − γj

[
∂h2

∂u′∂u

∣∣∣∣
uj

]−1
∂h

∂u′

∣∣∣∣
uj

(1)

where the gradient is a column vector and the Hessian is a positive definite matrix.
In a generic unconstrained optimization setting, Newton methods can be burdensome because they re-

quire implementations for all of the first and second partial derivatives of the objective function.

Approximate Fisher information

The authors of the BHHHmethod in [2] noted that, in the case of numerical maximum likelihood estimation,
this burden is reduced substantially because the Fisher information of a random variableX can be expressed
as either the expected value of the Hessian or the covariance of the gradient of the log-likelihood with respect
to the parameters.

∂2

∂θ′ ∂θ
E [− log f(X; θ)] = cov

[
∂ log f(X; θ)

∂θ′

]
1

So, if our problem is to identify the entropy-minimizing parameters

θ̂ = argmin
θ

H(X; θ)

where the entropy

H(X; θ) = E [− log f(X)] ≈ 1

n

n∑
i=1

− log f(xi; θ)

for an i.i.d. sample {xi}i=1,2,...,n, we effectively have the objective function

h(u) =
1

n

n∑
i=1

− log f(xi;u) (2)

We still need to be able to evaluate the first partials for each uj by hand; but in terms of these the Hessian
can be approximated by

∂h2

∂u′∂u

∣∣∣∣
uj

≈ 1

n

n∑
i=1

∂ (− log f(xi;u))
∂u′

∣∣∣∣
uj

∂ (− log f(xi;u))
∂u

∣∣∣∣
uj

(3)

which is guaranteed to be a positive definite matrix as long as all of the parameters are distinct.

Line search

We need to ensure in each step that γj is not too big. The method employed in BHHH seems to be based on
the prior work in [1].

The goal with this is to make sure that the magnitude of the gradient of h(·) is always decreasing. Choose
a constant 0 < δ < 1

2 . Start an inner iteration at k = 0 with the tentative assumption that γ(0)j = 1:

u
(k)
j+1 = uj − γ

(k)
j

[
∂h2

∂u′∂u

∣∣∣∣
uj

]−1
∂h

∂u′

∣∣∣∣
uj

If u(k)j+1 is valid and

h
(
u
(k)
j+1

)
− h (uj) < δ

(
u
(k)
j+1 − uj

)′ ∂h

∂u′

∣∣∣∣
uj

(4)

proceed with uj+1 = u
(k)
j+1. If not, progressively try

γ
(k+1)
j = 2−(k+1)

for k = 1, 2, . . . until condition (4) is met.
Note that the line search sub-routine presents an opportunity to validate that the new candidate for the

parameters satisfies any required constraints, such as the positivity of magnitudes1.
1Unconstrained optimization is generally ineffective if the optimal value lies on a domain boundary. For problems of this variety,

convex programming techniques may be more appropriate.

2

Worked example

Let’s consider the problem of determining the maximum likelihood estimates of the parameters of a Gener-
alized Pareto random variableX from an i.i.d. sample. The probability density function is

f(x) =

1
β

(
1− ξ x

β

)−1/ξ−1
for

{
ξ > 0 and x ≤ 0

−1 < ξ < 0 and β
ξ < x ≤ 0

1
β exp

(
−x

β

)
for ξ = 0 and x ≤ 0

for scale parameter β > 0 and left tail index parameter ξ > −1. Note that, in spite of apparent break at
ξ = 0, f(x) is smooth in both parameters throughout their domains for all x in the support.

The negative log-likelihood is

− log f(x;u) =

{
logβ +

(
1 + 1

ξ

)
log

(
1− ξ x

β

)
ξ ̸= 0

logβ − x
β ξ = 0

for u = (β, ξ)′. The components of the gradient are

∂(− log f(x;u))
∂β

=

1
β

(
1−

(
1 + 1

ξ

)(
1− 1

1−ξ x
β

))
ξ ̸= 0

1
β

(
1 + x

β

)
ξ = 0

∂(− log f(x;u))
∂ξ

=

1
ξ

(
1 + 1

ξ

)(
1− 1

1−ξ x
β

)
− 1

ξ2
log

(
1− ξ x

β

)
ξ ̸= 0

−x
β

(
1 + x

2β

)
ξ = 0

for x in the support.
Matching moments gives us a reasonable seed value to start the search for the maximum likelihood

estimates.

ξ0 =
1

2

(
1− E[X]2

var[X]

)
β0 = −E[X]

1

2

(
1 +

E[X]2

var[X]

)
assuming ξ < 1

2 so that the expected value and variance exist.
This is coded in the appendix. Samples of simulated data drawn from a Generalized Pareto with β = 1

and ξ = 0 are fit to a tolerance of 10−8, which seems to require about 4–8 total iterations for a sample size
of one hundred. Larger samples converge faster.

References

[1] Larry Armijo. Minimization of functions having Lipschitz continuous first partial derivatives. Pacific
Journal of Mathematics, 16(1):1–3, January 1966.

[2] Ernst K. Berndt, Bronwyn H. Hall, Robert E. Hall, and Jerry A. Hausman. Estimation and inference
in nonlinear structural models. Annals of Economic and Social Measurement, 3(4):653–665, October
1974.

3

Julia2 implementation (fall4case.jl)

module Fall4case

using Statistics
using LinearAlgebra

"validate inputs for GP"
function GP_valid(x,β,ξ)

if β≤0. || ξ<-1. || maximum(x)>0.
return false

end
if ξ<0. && minimum(x)≤β/ξ

return false
end
return true

end

"Generalied Pareto negative log-likelihood"
function GP(x,β,ξ)

if !GP_valid(x,β,ξ)
return NaN

end
if abs(ξ)<eps()

return log(β).-x/β
end
return log(β).+(1+1/ξ)log.(1 .-ξ*x/β)

end

"β partial of GP negative log-liklihood"
function GP_β(x,β,ξ)

if !GP_valid(x,β,ξ)
return NaN

end
if abs(ξ)<eps()

return (1 .+x/β)/β
end
return (1 .-(1+1/ξ)*(1 .-1 ./(1 .-ξ*x/β)))/β

end

"ξ partial of GP negative log-likelihood"
function GP_ξ(x,β,ξ)

if !GP_valid(x,β,ξ)
return NaN

2https://julialang.org/

4

https://julialang.org/

end
if abs(ξ)<eps()

return -x/β.*(1 .+x/2β)
end
return (1+1/ξ)*(1 .-1 ./(1 .-ξ*x/β))/ξ.-log.(1 .-ξ*x/β)/ξ^2

end

simulated data: variates from ξ=0, β=1
x = log.(rand(100))

"objective"
function h(u)

(β,ξ) = u
return mean(GP(x,β,ξ))

end

"gradient"
function h_grad(u)

(β,ξ) = u
return mean(

[GP_β(x,β,ξ) GP_ξ(x,β,ξ)]
,dims=1)

end

"approximate hessian"
function h_hess(u)

(β,ξ) = u
return cov(

[GP_β(x,β,ξ) GP_ξ(x,β,ξ)]
)

end

"approximate lower bound of estimator variance"
function cr_approx(u)

return inv(length(x)h_hess(u))
end

"Newton method minimizer"
function newtMin(h,h_grad,h_hess,u0

;maxiter=100,tol=1.e-8,δ=1.e-4)
u1 = u0
h1 = h(u1)
if isnan(h1)

throw(DomainError(u0,"invalid initial value"))
end

5

while maxiter>0
u0 = u1
h0 = h1
k = 0
while maxiter>0 && (k==0 || isnan(h1)

|| h1-h0>δ*dot(u1-u0,h_grad(u0)))
u1 = u0-2.0^k*h_grad(u0)/h_hess(u0)
h1 = h(u1)
k -= 1
maxiter -= 1

end
if abs(h1-h0)<tol

return u1
end

end
return u0

end

initial parmameter values from moment matching
ξ0 = (1-mean(x)^2/var(x))/2
β0 = -mean(x)*(1-ξ0)

"maximum likelihood estimate for GP parameters"
mle = newtMin(h,h_grad,h_hess,[β0 ξ0])

"approximate Cramér-Rao lower bound on standard errors"
se = sqrt.(diag(cr_approx(mle))')

export x,mle,se

end # Fall4case

6

