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Numerical Approach to Maximum Likelihood Estimation

Gradient descent (Newton) methods for minimizing a real-valued function are based on the observation that
if a function (in a single variable here) h(-) is sufficiently regular near its minimum u*, then A’(u*) = 0 and

W (w) ~ B (u) + B () (u — )

for u near u*, so

If b (uj) > 0 for each j, then an iterative scheme

W (uy)
Ujt1 = Uj — 75 h”(ujj)

for j=1,2,...
for 0 < v; < 1, will converge to u*, as long as uy is close enough to u*, and +y; not too large.

Multivariate optimization

If u is an element of a vector space, the scheme generalizes to
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where the gradient is a column vector and the Hessian is a positive definite matrix.

In a generic unconstrained optimization setting, Newton methods can be burdensome because they re-
quire implementations for all of the first and second partial derivatives of the objective function.
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Approximate Fisher information

The authors of the BHHH method in [2] noted that, in the case of numerical maximum likelihood estimation,
this burden is reduced substantially because the Fisher information of a random variable X can be expressed
as either the expected value of the Hessian or the covariance of the gradient of the log-likelihood with respect
to the parameters.
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So, if our problem is to identify the entropy-minimizing parameters
0= argrnginH(X; 0)

where the entropy

n

H(X:60) = B[~ log f(X)] =~ 3"~ log f(::6)
=1

for an i.i.d. sample {x;};,_; , _,, we effectively have the objective function
1 n
h(u) =~ —log f(wi;u) )
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We still need to be able to evaluate the first partials for each u; by hand; but in terms of these the Hessian
can be approximated by
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which is guaranteed to be a positive definite matrix as long as all of the parameters are distinct.

Line search

We need to ensure in each step that ; is not too big. The method employed in BHHH seems to be based on
the prior work in [|L].

The goal with this is to make sure that the magnitude of the gradient of /(+) is always decreasing. Choose
aconstant 0 < § < % Start an inner iteration at k = 0 with the tentative assumption that 'yj(.o =1:
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proceed with u; 1 = uglfr)l If not, progressively try
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for k = 1,2, ... until condition (§) is met.

Note that the line search sub-routine presents an opportunity to validate that the new candidate for the
parameters satisfies any required constraints, such as the positivity of magnitudesﬂ].

"Unconstrained optimization is generally ineffective if the optimal value lies on a domain boundary. For problems of this variety,
convex programming techniques may be more appropriate.



Worked example

Let’s consider the problem of determining the maximum likelihood estimates of the parameters of a Gener-
alized Pareto random variable X from an i.i.d. sample. The probability density function is

—1/¢-1 >0andx <0
% (1 —¢£ %) for ¢ r= 8
f(x) = —-1<f<0and g <z <0
%exp (—E) for £=0andz <0
for scale parameter 5 > 0 and left tail index parameter £ > —1. Note that, in spite of apparent break at

¢ =0, f(x) is smooth in both parameters throughout their domains for all z in the support.
The negative log-likelihood is

logﬂ+(1+%)log<1—§%) €40
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for u = (3,&)’. The components of the gradient are
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for x in the support.
Matching moments gives us a reasonable seed value to start the search for the maximum likelihood

estimates.
_ 1, E[XP
S0= 2 (1 a Var[X]>

2
fo =~ Blx3 (1+ )

assuming & < % so that the expected value and variance exist.
This is coded in the appendix. Samples of simulated data drawn from a Generalized Pareto with 8 = 1
and ¢ = 0 are fit to a tolerance of 10~8, which seems to require about 4-8 total iterations for a sample size

of one hundred. Larger samples converge faster.
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Julia? implementation (fall4case.jl)

module Fall4case

using Statistics
using LinearAlgebra

"validate inputs for GP"
function GP_valid(x,pB,§&)
if B=0. || &<-1. || maximum(x)>0.
return false
end
if £<0. && minimum(x)=B/§
return false
end
return true
end

""Generalied Pareto negative log-likelihood"
function GP(x,B,§)
if !'GP_valid(x,B,&)
return NaN
end
if abs(§)<eps()
return log(B).-x/B
end
return log(B).+(1+1/E)log. (1 .-Exx/B)
end

"B partial of GP negative log-liklihood"
function GP_B(x,B,£)
if !GP_valid(x,B,&)
return NaN
end
if abs(§)<eps()
return (1 .+x/B)/B
end

return (1 .—-(1+1/&)x(1 .-1 ./(1 .-&xx/B)))/B
end

"¢ partial of GP negative log-likelihood"
function GP_E(x,B,§)
if !'GP_valid(x,B,&)
return NaN

2https://julialang.orq/
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end
if abs(§)<eps()
return —-x/B.x(1 .+x/2B)
end
return (1+1/8)x(1 .-1 ./(1 .-&Exx/B))/E.-log.(1 .-Exx/B)/E"2
end

# simulated data: variates from &=0, B=1
x = log.(rand(100))

"objective"
function h(u)

(B,€) =u

return mean(GP(x,B,§))
end

"gradient"
function h_grad(u)
(B,&) = u
return mean(
[GP_B(x,B,E) GP_§(x,B,§)]
,dims=1)
end

"approximate hessian"
function h_hess(u)
(B,§) =u
return cov(
[GP_B(x,B,&) GP_E(x,B,§E)]
)

end

"approximate lower bound of estimator variance"
function cr_approx(u)

return inv(length(x)h_hess(u))
end

"Newton method minimizer"
function newtMin(h,h_grad, h_hess,u@
;maxiter=100,tol=1.e-8,6=1.e-4)
ul = uo@
hl = h(ul)
if isnan(hl)
throw(DomainError(u@,"invalid initial value"))
end



while maxiter>0

ug = ul
ho = hl
k=0

while maxiter>0 && (k==0 || isnan(hl)
|| h1-h@>6xdot(ul-u@,h_grad(u@)))

ul = u@-2.0"k*h_grad(u@)/h_hess(u0)
hl = h(ul)
k =1
maxiter —= 1
end
if abs(h1l-h@)<tol
return ul
end
end
return u@

end

# initial parmameter values from moment matching
£0 = (1-mean(x)"2/var(x))/2

B0 = -mean(x)*(1-£0)

"maximum likelihood estimate for GP parameters"
mle = newtMin(h,h_grad,h_hess, [B0 £0])

"approximate Cramér-Rao lower bound on standard errors"
se = sqrt.(diag(cr_approx(mle))"')

export x,mle,se

end # Fall4case



