
Quantitative Risk Management
Fall Assignment

John Dodson

September 26, 2018

This assignment is not a regular homework. It is a group project worth half of the module grade for the fall term.
Each team member will receive equal credit.

Please share your solution with me through Google Drive before the beginning of the classroom session onWednes-
day, October 10. Please turn in your report directly to me. You are welcome to discuss the project with our TA, but
she will not be grading it.

Your solution should include source code for programs and instructions for how to run them with the software
available on Math Department computers. I recommend you use tar or zip if you will be submitting several files.

Introduction
We saw in the third assignment that the tail index for an index of equity simple returns seems to be negative, but also
that the dataset seems to exhibit some clustering of loss events calling into question the assumption in the estimation
technique that the sample is i.i.d.

We saw in the fourth assignment that the the α1 parameter in GARCH(1,1) is materially positive, suggesting that
there is conditional heteroskedasticity, which may contribute to clustering of extreme losses. The GARCH(1,1) fit can
be used to attenuate this by converting the raw returns to standardized returns.

Problem Statement
Please produce a report or presentation explaining the problem and your approach to the solution, including intermediate
and final results, and discussing potential interpretations and relevant implications.

• Fit GARCH(1,1) to simple daily total returns on the listed common equity of your assigned company using 1,000
business days up to September 26, 2018. (20 points)

• Fit Generalized Pareto to the lowest 2% of standardized residuals and report the standard error of the tail index.
(20 points)

Grading Rubric
Ten out of fifty points will be based on the follow criteria:

• You follow all of the instructions. (2 points)

• I can reproduce your results with the code and documentation you provide. (2 points)

• Your write-up is clear and professional. (6 points)
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Solution
In the case from September 26, I introduced the BHHH solver for maximum likelihood estimates, and illustrated how
a fit to Generalized Pareto could be implemented. In this solution, I will continue with the BHHH solver in the context
of the conditional quasi-MLE for GARCH(1,1),
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for parameters u = (α0, α1, β1), residuals εi = xi − µi, and unconditional variance σ2

1 = α0/(1− β1 − α1). We can
assume that µi ≡ 0 for daily returns.

BHHH is a quasi2-Newton method requiring an explicit gradient along with the objective function, from which the
Hessian can be approximated from the Fisher information3.
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and the partials of the conditional variance are themselves linear recursions.
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Finally, recall from the solution to the third assignment that the Cramér-Rao lower bound on the variance of the
MLE for the tail index (assuming it is unbiased) is

se(ξ̂) =
ξ + 1√
n/50

The data consist of adjusted daily log-returns from the close of the session on October 8, 2014, through the close
of the session on September 26, 2018 for six common equities listed in Table 1. Cumulative returns are plotted in the
Figure 1.

Results
Results for the fits are in Table 2. With the possible exception of Comcast, the constant (α0) and ARCH (α1) terms
are materially positive.

Recall that the three-parameter GARCH(1,1) degenerates into two different single-parameter models at the param-
eter boundary.

1in the sense of maximum entropy residuals
2in the sense of approximate Hessian
3Note that in this case the Cramér-Rao lower bound result does not apply because the sample is not i.i.d..
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AMGN Amgen Inc.
ADBE Adobe Systems Inc.
CMCSA Comcast Corp.
CSCO Cisco Systems Inc.
ISRG Intuitive Surgical Inc.
PEP Pepsico Inc.

Table 1: Common equity securities analyzed
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Figure 1: Cumulative simple return from October 8, 2014 through September 26, 2018.

AMGN ADBE CMCSA CSCO ISRG PEP
α̂0 27.2×10-6 44.7×10-6 1.3×10-6 18.7×10-6 84.7×10-6 19.9×10-6
α̂1 0.111 0.270 0.043 0.159 0.305 0.234
β̂1 0.773 0.580 0.952 0.748 0.319 0.523
σ2
n+1 146.3×10-6 191.4×10-6 306.2×10-6 104.0×10-6 168.4×10-6 85.4×10-6

σ2
∞ 235.1×10-6 298.2×10-6 253.5×10-6 201.6×10-6 225.7×10-6 82.0×10-6

η -2.273 -2.151 -2.255 -1.987 -2.060 -2.291
β̂ 0.498 0.638 0.944 1.173 0.874 0.559
ξ̂ +0.341 +0.068 -0.035 +0.025 -0.029 -0.027
se(ξ̂) 0.300 0.239 0.216 0.229 0.217 0.218

Table 2: Parameter fits for 1,000 daily log-returns through September 26, 2018
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worst loss AMGN ADBE CMCSA CSCO ISRG PEP
per year -5.01% -5.45% -5.78% -5.41% -5.04% -2.84%
per decade -9.32% -8.30% -8.69% -9.22% -7.66% -3.88%

Table 3: Extrapolated extreme daily (simple-interest) losses based on Generalized Pareto fits

• If α0 ≈ 0, the exponentially weighted moving average (EWMA) model might be adequate; although with an
undefined unconditional variance, it is not realistic for financial invariants over longer horizons.

• If α1 ≈ 0, a fixed variance might be adequate.

In the case of Comcast, the fixed variance model might be a reasonable alternative to GARCH.
Considering the left tail, it is probably difficult to reject the hypothesis that extreme negative log-returns are in the

Gumbel class (ξ = 0). The Gumbel is the most reasonable extreme value class for log-returns since it does not impose
an arbitrary bound; and since finite expected values for prices requires all moments in the exponent.

While theGumbel class does includes the normal, that is only an example. Considering the empirical 2% thresholds,
all but Cisco Systems (and essentially Intuitive Surgical) have η < Φ−1(0.02) ≈ −2.05 suggesting some skewness or
excess kurtosis.

We can use the Generalized Pareto model to extrapolate to extreme but plausible idiosyncratic loss scenarios for
equity holders. For example, assuming that there are on average 252.75 trading days per year, the worst day in a year
corresponds to a quantile level of approximately 1/252.75 ≈ 0.0040. Using the inverse of the distribution function, we
can determine the corresponding standardized residual, which we can scale with the square-root of the unconditional
variance and exponentiate to get the simple-return loss. A sample of these is in Table 3.

For context, there was a systematic decline in US equity markets on October 10, 2018, just a few days after the
end of this calibration period. The narrative at the time was that the market was reacting to very strong jobs report
and hence renewed fear of Fed tightening; and technology stocks seems to be the most affected. Adobe Systems in
particular lost 6.39% (simple interest) during the session, which exceeds the forecast worst lost per year. Our other
stocks also suffered declines, but comfortably less negative than the predictions in the table.

Julia4 implementation (fallassign.jl)
1 module Fallassign
2

3 using Statistics
4 using LinearAlgebra
5

6 "GARCH(1,1) conditional variance for θ = [α0;α1;β1]"
7 function garch(ϵ,θ)
8 (α0,α1,β1) = θ
9 σ² = fill(NaN,length(ϵ))
10 if α0>0 && α1>0 && β1≥0 && α1<1-β1
11 σ²[1] = α0/(1-β1-α1)
12 for i = 2:length(ϵ)
13 σ²[i] = α0+α1*ϵ[i-1]^2+β1*σ²[i-1]
14 end
15 end
16 return σ²
17 end
18

19 "GARCH(1,1) conditional variance (α0,α1,β1) partials"

4https://julialang.org/
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20 function garch_grad(ϵ,θ)
21 (α0,α1,β1) = θ
22 σ² = garch(ϵ,θ)
23 grad = fill([NaN;NaN;NaN],length(ϵ))
24 if α0>0 && α1>0 && β1≥0 && α1<1-β1
25 grad[1] = [
26 1/(1-β1-α1);
27 α0/(1-β1-α1)^2;
28 α0/(1-β1-α1)^2 ]
29 for i = 2:length(ϵ)
30 grad[i] = [
31 1+β1*grad[i-1][1];
32 ϵ[i-1]^2+β1*grad[i-1][2];
33 σ²[i-1]+β1*grad[i-1][3] ]
34 end
35 end
36 return grad
37 end
38

39 "negative quasi log-likelihood for GARCH"
40 function qmle_obj(ϵ,θ)
41 σ² = garch(ϵ,θ)
42 return (log.(2π*σ²)+ϵ.^2 ./σ²)/2
43 end
44

45 "negative quasi log-likelihood for GARCH (α0,α1,β1) partials"
46 function qmle_grad(ϵ,θ)
47 σ² = garch(ϵ,θ)
48 return (1 .-ϵ.^2 ./σ²)./(2*σ²).*garch_grad(ϵ,θ)
49 end
50

51 "indicator for domain for GP parameters"
52 function valid(z,θ)
53 (β,ξ) = θ
54 if β≤0 || ξ<-1 || maximum(z)>0
55 return false
56 end
57 if ξ<0 && minimum(z)≤β/ξ
58 return false
59 end
60 return true
61 end
62

63 "negative log-likelihood for GP for θ = [β;ξ]"
64 function mle_obj(z,θ)
65 if !valid(z,θ)
66 return fill(NaN,length(z))
67 end
68 (β,ξ) = θ
69 if abs(ξ)<eps()
70 return log(β).-z/β
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71 end
72 return log(β).+(1+1/ξ)log.(1 .-ξ*z/β)
73 end
74

75 "negative log-liklihood for GP (β,ξ) partials"
76 function mle_grad(z,θ)
77 if !valid(z,θ)
78 return fill([NaN;NaN],length(z))
79 end
80 (β,ξ) = θ
81 if abs(ξ)<eps()
82 return [[
83 (1+z/β)/β;
84 -z/β*(1+z/2β) ] for z in z]
85 end
86 return [[
87 (1-(1+1/ξ)*(1-1/(1-ξ*z/β)))/β;
88 (1+1/ξ)*(1-1/(1-ξ*z/β))/ξ-
89 log(1-ξ*z/β)/ξ^2 ] for z in z]
90 end
91

92 "Newton's method minimizer"
93 function newtMin(h_obj::Function,h_grad::Function
94 ,h_hess::Function,u0::Vector
95 ;maxiter=100,tol=1.e-8,δ=1.e-4)
96 u1 = u0
97 h1 = h_obj(u1)
98 if isnan(h1)
99 throw(DomainError(u0,"invalid initial value"))
100 end
101 while maxiter>0
102 u0 = u1
103 h0 = h1
104 k = 0
105 while maxiter>0 && (k==0 || isnan(h1)
106 || h1-h0>δ*dot(u1-u0,h_grad(u0)))
107 u1 = u0-2.0^k*h_hess(u0)\h_grad(u0)
108 h1 = h_obj(u1)
109 k -= 1
110 maxiter -= 1
111 end
112 if abs(h1-h0)<tol
113 return u1
114 end
115 end
116 return u0
117 end
118

119 "BHHH solver for maximum likelihood estimates"
120 function bhhh(x::Vector,obj::Function,grad::Function,θ₀::Vector)
121 h_obj = θ->mean(obj(x,θ))
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122 h_grad = θ->mean(grad(x,θ))
123 h_hess = θ->cov(grad(x,θ))
124 return newtMin(h_obj,h_grad,h_hess,θ₀)
125 end
126

127 export garch, qmle_obj, qmle_grad, mle_obj, mle_grad, bhhh
128

129 end # Fallassign
130

131 # ------------------
132 # ----- SCRIPT -----
133 # ------------------
134

135 using .Fallassign
136 using CSV
137 using Statistics
138

139 "dataset"
140 df = CSV.read("fallassign.csv")
141 dates = df[:Date] # assume oldest first
142 tickers = [symb for symb in names(df) if symb != :Date]
143

144 "GARCH parameters"
145 parms_garch = Dict{Symbol,Vector{Float64}}()
146 "GP parameters"
147 parms_gp = Dict{Symbol,Vector{Float64}}()
148

149 for ticker in tickers
150 # prepare invariants
151 x = diff(log.(df[ticker])) # daily log-returns
152 μ = zeros(length(x)) # assume zero conditional means
153 ϵ = x-μ # residuals
154 # fit GARCH
155 (α1₀,β1₀) = (.2,.7) # guess initial GARCH coeffs
156 α0₀ = var(ϵ)*(1-β1₀-α1₀) # match moments
157 θ_garch = bhhh(ϵ,qmle_obj,qmle_grad,[α0₀;α1₀;β1₀])
158 σ² = garch([ϵ;NaN],θ_garch)
159 σ²₁ = pop!(σ²) # forecast
160 # lower tail of standardized returns
161 z = collect(partialsort!(ϵ./sqrt.(σ²)
162 ,1:div(length(ϵ),50))) # fast sort
163 η = z[end] # threshold, empirical 2% quantile
164 # fit GP
165 ξ₀ = (1-mean(z.-η)^2/var(z))/2 # match moments
166 β₀ = -mean(z.-η)*(1-ξ₀) # match moments
167 θ_gp = bhhh(z,mle_obj,mle_grad,[β₀;ξ₀])
168 # memo results
169 parms_garch[ticker] = [θ_garch;σ²₁]
170 parms_gp[ticker] = [η;θ_gp]
171 end
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