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Multivariate Random Variables

John Dodson

We are going to pick up where we left off last term. The
reading for this week (ch. 6) is long, but some of it should
be review. In particular we have already seen most of the
material in §6.1 on multivariate basics and §6.2 on variance
mixtures of normals

» multivariate distribution and density concepts

» Maronna's M-estimator

» GIG-variance mixtures of normals (symmetric GH r.v.)

>

affinity of conditional expectation with respect to
condition event for multi-normals



Review: Random Variables on R™

John Dodson

The most important parametric random variable with
half-line support is the Generalized Inverse Gaussian

Generalized Inverse Gaussian (GIG)
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for x > 0, where K)(+) is modified Bessel function of the
second kind.

f(x) =

» This generalizes the Gamma and reciprocal Gamma
» There are several versions of parameterization in use

» Other members of this family include the inverse
Gaussian and the reciprocal inverse Gaussian

» The name relates to the first passage time of a
Brownian motion through a boundary



Mixtures
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We saw last semester that conditioning generally reduces
entropy. Mixing has the opposite effect. This is useful if you
want to moderate statistical hubris.

Say X is the parametric r.v. we are interested in.

1. Concatenate it with some function of the parameters to
make a multivariate r.v. X4#0O.

2. Specify the marginal density of © and the conditional
density of X|©.

3. Integrate over the support of © to get the marginal
density of X, the new mixture.

fxro (t-0) = fxo(x 0)fo(0)
— A = / fro(x 8)fo(6) db
a(e)



Mixtures
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Student's-t is a symmetric r.v. which exhibits leptokurtosis.

(Gosset's) Student's-t

Consider a normal r.v. with an unknown variance close to
one. If the variance is a draw from an reciprocal Gamma,
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the resulting unconditioned density is

» The version with v = 1 is the Cauchy

» The limit ¥ — oo is a normal



Mixtures
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The version of the Student’s-t above has a variance for
v > 2, but it is not unity.

Standardized Student’s-t
The standardized version can be useful for fitting residuals*.
It has the density

vl —xft
s ()

v—2

> *Note that E X — oo for any finite v so Student’s-t
cannot be used with log-returns of asset prices.

» For historical reasons, if the parameter v is an integer,
it is termed the degrees of freedom.



Mixtures
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The generalized hyperbolic family is a normal mean / GIG

variance mixture. The Student's-t is a special case (with
A= —v/2).

Normal / reciprocal inverse Gaussian (NRIG)

Another useful GH is the symmetric Normal / reciprocal
inverse Gaussian mixture (with A = 3). The standardized
version has the density

1
K00 = TV Trgko (/g + 1+ 807 )

for shape parameter g > 0. It is not obvious, but the limit
g — oo corresponds to the normal.

» As a model for the residuals of the log-returns of asset
prices, this is superior to the Student’s-t example from
the text because E X is finite.



Mixtures

We can use the NRIG to illustrate the effects of scaling and
mixing on entropy.

(mixing) (scaling)
Hx = E Hxe(©) + Ho = Hax — log]|al

1.00

standard deviation

g

NRIG relative to a Gaussian for fixed entropy

» The leptokurtosis of the NRIG allows the standard
deviation to be up to almost 20% lower

John Dodson



Spherical Random Variables
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It is helpful to build up a theory of multivariate random
variables from geometric principles. By definition, a spherical
random variable is distributionally invariant to rotations,

ux < x

where U is a square matrix representation of a rotation,
which means that U'U = I.

Spherical random variables have two equivalent defining
properties,

ax<a|x
EetX =1 (t't)
for vectors a and t. We term 4(+) the characteristic
generator of X. We therefore write X ~ S4(1)) to denote a

spherical random variable in d dimensions with characteristic
generator ¥(+).



Elliptical Random Variables
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An affine transformation of a spherical random variable is
termed an elliptical random variable.

XL+ AY

where Y ~ S,(¢) and A is a d x k matrix.
The distributional invariance of Y to rotations means that A

is generally redundant. All we need to characterize X is u,
(), and ¥ = AA’. But note that

Eq (1, 5, 0(-)) £ Eq(, S, 0(-/0))

for ¢ > 0, so ¥ may not necessarily be the covariance of X.

> Note that X need not be full rank. In this case, the
rank of X is at most d A k.



Elliptical Random Variables
John Dodson
Some Properties
Say X ~ Eq(p, %,1)).
» linear combinations If B k x d and b k x 1 constants,

then
BX—i—bNEk(Bu—i—b,BZB’,w)

» if X is full rank, then the non-negative scalar r.v.

R= /(X uys—1(X - )

is independent of S= Y ~Y/2(X— u)/R and S'is
uniformly distributed on a unit sphere.

> convolutions If ¥ ~ Ey4(fi, X, 1)) independent of X, then

X+ Y Ey(pt i xoD)



Linear Factor Models
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If Xis a d-dim random variable, and we can write
X=a+BF+e¢

where Fis a p-dim random vector with p < d and cov F > 0,
B is a d X p matrix, the entries of € are zero mean and
uncorrelated, and cov (F,e) = 0, we call F the common
factors and B the factor loadings.

We would consider this a model or approximation if d > p.
Sometimes we have an idea about what the factors or
loadings might be; they might even be observable.

» |n macroeconomic factor models, we observe the
factors.

» In fundamental factor models, we observe the loadings.

» In statistical or latent factor models, we observe neither
the factors nor the loadings.



Linear Factor Models
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Capital Asset Pricing Model

CAPM for investments is an example of a macroeconomic
factor model. It is typically applied to traded equity
securities and a risk-free deposit as canonical “capital
assets”. We will take X to be the (simple) return on each
risky capital asset over some investment period.

If X is normal and investors allocate to maximize expected
exponential utility, then we can express the equilibrium
solution as a single-factor model where F is the return on a
broad index of risky capital assets.

The factor loadings B; can be determined by regression, and
are termed the asset “betas”.

The intercept components turn out to be a; = rr (1 — B))
where r is the return rate on the risk-free asset.



Linear Factor Models

Fundamental Model

Sometimes it is useful to impose a classification scheme on
the components of X, for example an industry classification
scheme or a geographic or demographic scheme. In this
case, we generally know the non-zero loadings in B, but we
do not observe the factors F.

In this case, we can estimate timeseries for F in terms of
timeseries for X according to ordinary least squares
regression

FO'S — (BB) ' B X;

if the variance of the residuals is the same (homoscedastic)
or generalized least squares regression

Fo's — (BY~1B) ' BY X,

if not.

John Dodson



Principal Components

Principal components analysis is inspired by the concept of a
statistical factor model, but since it is entirely endogenous it
is really a separate concept.

A covariance or correlation matrix £ has the property of
being positive semi-definite, which means that X~ x > 0 for
all compatible vectors x. Therefore, by the spectral
decomposition theorem, we can write

Y =TAI'

where A is a diagonal matrix with non-negative entries (the
eigenvalues) and I is a square matrix whose columns (the
eigenvectors) are orthonormal, which means m =1

John Dodson



Principal Component Analysis
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If ¥ has full rank d, all of the eigenvalues will be positive.
The potential for dimension reduction comes from
partitioning the model into the largest k < d eignevalues and
eigenvectors, and relegating the remaining d — k to the
residual.

Principal Components as Factors

Let d x 1 Y=T'(X— p) where p is the mean of X.
Partition Yand I into kx 1 Y7 and (d — k) x 1 Y5 and
dx kTiand dx (d— k) 'y and let e =2 Y5, then

X=p+T1Y1+e

and € almost satisfies the assumptions for a linear factor
model.
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