Quantitative Risk Management Second Case for Week 4

John Dodson

November 13, 2019

Numerical Approach to Maximum Likelihood Estimation

Gradient descent (Newton) methods for minimizing a real-valued function are based on the observation that if a function (in a single variable here) $u \mapsto h(u)$ is sufficiently regular near its minimum u^{\star}, then $h^{\prime}\left(u^{\star}\right)=0$ and

$$
h^{\prime}(u) \approx h^{\prime}\left(u^{\star}\right)+h^{\prime \prime}\left(u^{\star}\right)\left(u-u^{\star}\right)
$$

for u near u^{\star}, so

$$
u^{\star} \approx u-\frac{h^{\prime}(u)}{h^{\prime \prime}(u)}
$$

If $h^{\prime \prime}\left(u_{j}\right)>0$ for each j, then an iterative scheme

$$
u_{j+1}=u_{j}-\gamma_{j} \frac{h^{\prime}\left(u_{j}\right)}{h^{\prime \prime}\left(u_{j}\right)} \quad \text { for } \quad j=1,2, \ldots
$$

for $0<\gamma_{j} \leq 1$, will converge to u^{\star}, as long as u_{0} is close enough to u^{\star}, and γ_{j} not too large.

Multivariate optimization

If u is an element of a vector space, the scheme generalizes to

$$
\begin{equation*}
u_{j+1}=u_{j}-\left.\gamma_{j}\left[\left.\frac{\partial h^{2}}{\partial u^{\prime} \partial u}\right|_{u_{j}}\right]^{-1} \frac{\partial h}{\partial u^{\prime}}\right|_{u_{j}} \tag{1}
\end{equation*}
$$

where the gradient is a column vector and the Hessian is a positive definite matrix.
In a generic unconstrained optimization setting, Newton methods can be burdensome because they require implementations for all of the first and second partial derivatives of the objective function.

Approximate Fisher information

The authors of the BHHH method in [2] noted that, in the case of numerical maximum likelihood estimation, this burden is reduced substantially because the Fisher information of a random variable X can be expressed as either the expected value of the Hessian or the covariance of the gradient of the log-likelihood with respect to the parameters.

$$
\frac{\partial^{2}}{\partial \theta^{\prime} \partial \theta} \mathrm{E}[-\log f(X ; \theta)]=\operatorname{cov}\left[\frac{\partial \log f(X ; \theta)}{\partial \theta^{\prime}}\right]
$$

So, if our problem is to identify the entropy-minimizing parameters

$$
\hat{\theta}=\arg \min _{\theta} H(X ; \theta)
$$

where the entropy

$$
H(X ; \theta)=\mathrm{E}[-\log f(X)] \approx \frac{1}{n} \sum_{i=1}^{n}-\log f\left(x_{i} ; \theta\right)
$$

for an i.i.d. sample $\left\{x_{i}\right\}_{i=1,2, \ldots, n}$, we effectively have the objective function

$$
\begin{equation*}
h(u)=\frac{1}{n} \sum_{i=1}^{n}-\log f\left(x_{i} ; u\right) \tag{2}
\end{equation*}
$$

We still need to be able to evaluate the first partials for each u_{j} by hand; but in terms of these the Hessian can be approximated by

$$
\begin{equation*}
\left.\left.\left.\frac{\partial h^{2}}{\partial u^{\prime} \partial u}\right|_{u_{j}} \approx \frac{1}{n} \sum_{i=1}^{n} \frac{\partial\left(-\log f\left(x_{i} ; u\right)\right)}{\partial u^{\prime}}\right|_{u_{j}} \frac{\partial\left(-\log f\left(x_{i} ; u\right)\right)}{\partial u}\right|_{u_{j}} \tag{3}
\end{equation*}
$$

which is guaranteed to be a positive definite matrix as long as all of the parameters are distinct.

Line search

We need to ensure in each step that γ_{j} is not too big. The method employed in BHHH seems to be based on the prior work in [1].

The goal with this is to make sure that the magnitude of the gradient of $h(\cdot)$ at each step is always decreasing. Choose a constant $0<\delta<\frac{1}{2}$. Start an inner iteration at $k=0$ with the tentative assumption that $\gamma_{j}^{(0)}=1$:

$$
u_{j+1}^{(k)}=u_{j}-\left.\gamma_{j}^{(k)}\left[\left.\frac{\partial h^{2}}{\partial u^{\prime} \partial u}\right|_{u_{j}}\right]^{-1} \frac{\partial h}{\partial u^{\prime}}\right|_{u_{j}}
$$

If $u_{j+1}^{(k)}$ is valid and

$$
\begin{equation*}
h\left(u_{j+1}^{(k)}\right)-h\left(u_{j}\right)<\left.\delta\left(u_{j+1}^{(k)}-u_{j}\right)^{\prime} \frac{\partial h}{\partial u^{\prime}}\right|_{u_{j}} \tag{4}
\end{equation*}
$$

proceed with $u_{j+1}=u_{j+1}^{(k)}$. If not, progressively try

$$
\gamma_{j}^{(k+1)}=2^{-(k+1)}
$$

for $k=1,2, \ldots$ until condition (4) is met.
Note that the line search sub-routine presents an opportunity to validate that the new candidate for the parameters satisfies any required constraints, such as the positivity of magnitudes ${ }^{[1]}$.

[^0]
Worked example

Let's consider the problem of determining the maximum likelihood estimates of the parameters of a Generalized Pareto random variable X from an i.i.d. sample. The probability density function is

$$
f(x ; \beta, \xi)= \begin{cases}\frac{1}{\beta}\left(1-\xi \frac{x}{\beta}\right)^{-1 / \xi-1} & \text { for } \quad\left\{\begin{array}{l}
\xi>0 \text { and } x \leq 0 \\
-1<\xi<0 \text { and } \frac{\beta}{\xi}<x \leq 0
\end{array}\right. \\
\frac{1}{\beta} \exp \left(-\frac{x}{\beta}\right) & \text { for } \quad \xi=0 \text { and } x \leq 0\end{cases}
$$

for scale parameter $\beta>0$ and left tail index parameter $\xi>-1$. Note that, in spite of the apparent break at $\xi=0, u \mapsto f(x ; u)$ is smooth in both parameters $u=(\beta, \xi)^{\prime}$ throughout their domains for all x in the support.

The negative log-likelihood is

$$
-\log f(x ; u)= \begin{cases}\log \beta+\left(1+\frac{1}{\xi}\right) \log \left(1-\xi \frac{x}{\beta}\right) & \xi \neq 0 \\ \log \beta-\frac{x}{\beta} & \xi=0\end{cases}
$$

The components of the gradient are

$$
\begin{aligned}
& \frac{\partial(-\log f(x ; u))}{\partial \beta}= \begin{cases}\frac{1}{\beta}\left(1-\left(1+\frac{1}{\xi}\right)\left(1-\frac{1}{1-\xi^{\frac{x}{\beta}}}\right)\right) & \xi \neq 0 \\
\frac{1}{\beta}\left(1+\frac{x}{\beta}\right) & \xi=0\end{cases} \\
& \frac{\partial(-\log f(x ; u))}{\partial \xi}= \begin{cases}\frac{1}{\xi}\left(1+\frac{1}{\xi}\right)\left(1-\frac{1}{1-\xi^{\frac{x}{\beta}}}\right)-\frac{1}{\xi^{2}} \log \left(1-\xi \frac{x}{\beta}\right) & \xi \neq 0 \\
-\frac{x}{\beta}\left(1+\frac{x}{2 \beta}\right) & \xi=0\end{cases}
\end{aligned}
$$

for x in the support.
Matching first and second moments gives us a reasonable seed value to start the search for the maximum likelihood estimates.

$$
\begin{aligned}
& \xi_{0}=\frac{1}{2}\left(1-\frac{\mathrm{E}[X]^{2}}{\operatorname{var}[X]}\right) \\
& \beta_{0}=-\mathrm{E}[X] \frac{1}{2}\left(1+\frac{\mathrm{E}[X]^{2}}{\operatorname{var}[X]}\right)
\end{aligned}
$$

assuming $\xi<\frac{1}{2}$ so that the expected value and variance exist.
This is coded in the appendix. Samples of simulated data drawn from a Generalized Pareto with $\beta=1$ and $\xi=0$ are fit to a tolerance of 10^{-8}, which seems to require about 4-8 total iterations for a sample size of one hundred. Larger samples converge faster.

References

[1] Larry Armijo. Minimization of functions having Lipschitz continuous first partial derivatives. Pacific Journal of Mathematics, 16(1):1-3, January 1966.
[2] Ernst K. Berndt, Bronwyn H. Hall, Robert E. Hall, and Jerry A. Hausman. Estimation and inference in nonlinear structural models. Annals of Economic and Social Measurement, 3(4):653-665, October 1974.

Julia ${ }^{2}$ implementation (fall4case. $\mathbf{j l}$)

```
module Fall4case
using Statistics
using LinearAlgebra
"validate inputs for GP"
function GP_valid(x, }\beta,\xi
    if }\beta\leq0. || \xi<-1. || maximum(x)>0
        return false
    end
    if }\xi<0.&& minimum(x)\leq\beta/
        return false
    end
    return true
end
"Generalied Pareto negative log-likelihood"
function GP(x, \beta,\xi)
    if !GP_valid(x, }\beta,\xi
        return NaN
    end
    if abs(\xi)<eps()
        return log( }\beta\mathrm{ ).-x/ 
    end
    return log(\beta).+(1+1/\xi)log.(1 . - \xi*x/\beta)
end
" }\beta\mathrm{ partial of GP negative log-liklihood"
function GP_\beta(x, \beta,\xi)
    if !GP_valid(x, }\beta,\xi
        return NaN
    end
    if abs(\xi)<eps()
            return (1 .+x/\beta)/\beta
    end
    return (1 . - (1+1/\xi)*(1 , -1 ./(1 . -\xi*x/\beta)))/\beta
end
"\xi partial of GP negative log-likelihood"
function GP_\xi(x, \beta,\xi)
    if !GP_valid(x, }\beta,\xi
        return NaN
```

[^1]```
 end
 if abs(\xi)<eps()
 return -x/\beta.*(1 .+x/2\beta)
 end
 return (1+1/\xi)*(1 . -1 ./(1 . - \xi*x/\beta))/\xi.- log.(1 . - \xi*x/\beta)/\xi^2
end
simulated data: variates from \xi=0, }\beta=
x = log.(rand(100))
"objective"
function h(u)
 (\beta,\xi)=u
 return mean(GP(x,\beta,\xi))
end
"gradient"
function h_grad(u)
 (\beta,\xi)=u
 return mean(
 [GP_\beta(x,\beta,\xi) GP_\xi(x, \beta,\xi)]
 ,dims=1)
end
"approximate hessian"
function h_hess(u)
 (\beta,\xi)=u
 return cov(
 [GP_\beta(x,\beta,\xi) GP_\xi(x, \beta,\xi)]
)
end
"approximate lower bound of estimator variance"
function cr_approx(u)
 return inv(length(x)h_hess(u))
end
"Newton method minimizer"
function newtMin(h,h_grad,h_hess,u0
 ;maxiter=100,tol=1.e-8,\delta=1.e-4)
 u1 = u0
 h1 = h(u1)
 if isnan(h1)
 throw(DomainError(u0,"invalid initial value"))
 end
```

```
 while maxiter>0
 u0 = u1
 h0 = h1
 k = 0
 while maxiter>0 && (k==0 || isnan(h1)
 || h1-h0>\delta*dot(u1-u0,h_grad(u0)))
 u1 = u0-2.0^k*h_grad(u0)/h_hess(u0)
 h1 = h(u1)
 k -= 1
 maxiter -= 1
 end
 if abs(h1-h0)<tol
 return u1
 end
end
return u0
end
initial parameter values from moment matching
\xi0 = (1-mean(x)^2/var(x))/2
\beta0}=-\operatorname{mean}(x)*(1-\xi0
"maximum likelihood estimate for GP parameters"
mle = newtMin(h,h_grad,h_hess,[\beta0 \xi0])
"approximate Cramér-Rao lower bound on standard errors"
se = sqrt.(diag(cr_approx(mle))')
export x,mle,se
end # Fall4case
```


[^0]:    ${ }^{1}$ Unconstrained optimization is generally ineffective if the optimal value lies on a domain boundary. For problems of this variety, convex programming techniques may be more appropriate.

[^1]:    2https://julialang.org/

