Quantitative Risk Management
 Case for Week 7

John A. Dodson

December 4, 2019

Let us consider the expected shortfall index of satisfaction for a very simple portfolio: λ shares in an asset whose value today is $p>0$ and whose horizon value P is lognormal.

Let us assume that the objective measure is mark-to-market profit; therefore in the text's notation, we have (apologies for the signs)

$$
\begin{aligned}
-L & =\lambda(P-p) \\
& =\lambda p\left(e^{X}-1\right)
\end{aligned}
$$

where the invariant total return is normal $X \sim \mathcal{N}(\mu, \Sigma)$ with mean μ and variance $\Sigma>0$. The risk measure is

$$
-\varrho(L)=-r_{\varrho}(\lambda)=\frac{1}{1-c} \int_{0}^{1-c} F_{-L}^{\leftarrow}(q) d q
$$

for confidence level $c<1$ in terms of the quantile function for the objective value.

Exact Version

In this simple situation, we can actually calculate a relatively simple expression for the value of index of satisfaction. It will be useful to compare this below with the approximate value we get from the CornishFisher expansion.

We proceed to evaluate the exact version by considering the CDF of the objective.

$$
\begin{aligned}
F_{-L}(z) & =\mathrm{P}\{-L<z\} \\
& =\mathrm{P}\left\{\lambda p\left(e^{X}-1\right)<z\right\} \\
& =\mathrm{P}\left\{X \operatorname{sgn} \lambda<\log \left(1+\frac{z}{\lambda p}\right) \operatorname{sgn} \lambda\right\} \\
& =\mathrm{P}\left\{\frac{X-\mu}{\sqrt{\Sigma}} \operatorname{sgn} \lambda<\frac{\log \left(1+\frac{z}{\lambda p}\right)-\mu}{\sqrt{\Sigma}} \operatorname{sgn} \lambda\right\} \\
& =\Phi\left(\frac{\log \left(1+\frac{z}{\lambda p}\right)-\mu}{\sqrt{\Sigma} \operatorname{sgn} \lambda}\right)
\end{aligned}
$$

where $\Phi(\cdot)$ is the CDF of a standard normal.

The quantile, which is the inverse of the distribution function, is therefore

$$
F_{-L}^{\leftarrow}(q)=\lambda p\left(e^{\mu+\operatorname{sgn} \lambda \sqrt{\Sigma} \Phi^{-1}(q)}-1\right)
$$

So can proceed to evaluate the index of satisfaction.

$$
\begin{aligned}
-r_{\varrho}(\lambda) & =\frac{1}{1-c} \int_{0}^{1-c} \lambda p\left(e^{\mu+\operatorname{sgn} \lambda \sqrt{\Sigma} \Phi^{-1}(q)}-1\right) d q \\
& =\lambda p\left(\frac{1}{1-c} \int_{0}^{1-c} e^{\mu+\operatorname{sgn} \lambda \sqrt{\Sigma} \Phi^{-1}(q)} d q-1\right) \\
& =\lambda p\left(\frac{1}{1-c} \int_{-\infty}^{\Phi^{-1}(1-c)} e^{\mu+\operatorname{sgn} \lambda \sqrt{\Sigma} z} \phi(z) d z-1\right)
\end{aligned}
$$

where the last line is achieved by the change of variable $z=\Phi^{-1}(q)$ and $\phi(z)=\Phi^{\prime}(z)$ is the density of a standard normal.

Since

$$
e^{\mu+\operatorname{sgn} \lambda \sqrt{\Sigma} z} \phi(z)=e^{\mu+\frac{1}{2} \Sigma} \phi(z-\operatorname{sgn} \lambda \sqrt{\Sigma})
$$

we have the final result,

$$
\begin{equation*}
r_{\varrho}(\lambda)=-\lambda p\left(e^{\mu+\frac{1}{2} \Sigma} \frac{1}{1-c} \Phi\left(\Phi^{-1}(1-c)-\operatorname{sgn} \lambda \sqrt{\Sigma}\right)-1\right) \tag{1}
\end{equation*}
$$

Short Horizon Approximation

For short horizons, the mean and variance of the total return invariant are small. To lowest order, the exact result in (1) can be approximated by

$$
\begin{equation*}
r_{\varrho}(\lambda) \approx-\lambda p \mu+\frac{\phi\left(\Phi^{-1}(1-c)\right)}{1-c}|\lambda| p \sqrt{\Sigma} \tag{2}
\end{equation*}
$$

which is in the form $\varrho(L)=\mathrm{E} L+k_{\varrho}$ std L that we have seen before.
Let us spend a moment interpreting this. A long $(\lambda>0)$ is less risky if the asset has a positive expected return $(\mu>0)$, and a short $(\lambda<0)$ is less risky if the asset has a negative expected return $(\mu<0)$. In contrast, positive variance increases risk for any non-zero position.

This all seems quite reasonable for a rational risk measure.

Cornish-Fisher Approximation

It is unusual to have a simple analytic expression for the expected shortfall such as (1). This is why the Cornish-Fisher expansion can be useful in practice. In order to use this, we need several low central moments for the loss. In a Delta-Gamma setting, we can replace the objective by the quadratic

$$
-L=\lambda p\left(e^{X}-1\right) \approx \lambda p\left(X+\frac{1}{2} X^{2}\right)
$$

Figure 1: Factor for Delta-Gamma expected shortfall
hence $\Theta_{\lambda}=0, \Delta_{\lambda}=\lambda p$, and $\Gamma_{\lambda}=\lambda p$. Let us define a new objective ${ }^{1}$ to represent this approximation.

$$
\Xi_{\lambda}=\lambda p\left(X+\frac{1}{2} X^{2}\right)
$$

Is is straight-forward (but tedious) to work out that the first several central moments of this are

$$
\begin{aligned}
\mathrm{E}\left(\Xi_{\lambda}\right) & =\lambda p\left(\mu+\frac{1}{2} \mu^{2}+\frac{1}{2} \Sigma\right) \\
\operatorname{Sd}\left(\Xi_{\lambda}\right) & =|\lambda| p \sqrt{\Sigma} \sqrt{(1+\mu)^{2}+\frac{1}{2} \Sigma} \\
\operatorname{Sk}\left(\Xi_{\lambda}\right) & =3 \operatorname{sgn} \lambda \sqrt{\Sigma} \frac{(1+\mu)^{2}+\frac{1}{3} \Sigma}{\left((1+\mu)^{2}+\frac{1}{2} \Sigma\right)^{3 / 2}}
\end{aligned}
$$

The third-order Cornish-Fisher expansion for expected shortfall in general is

$$
-r_{\varrho}(\lambda) \approx \mathrm{E}\left(\Xi_{\lambda}\right)+\operatorname{Sd}\left(\Xi_{\lambda}\right)\left(z_{1}+\frac{z_{2}-1}{6} \operatorname{Sk}\left(\Xi_{\lambda}\right)\right)
$$

with coefficients

$$
\begin{aligned}
& z_{1}=\frac{1}{1-c} \int_{0}^{1-c} \Phi^{-1}(q) d q=-\frac{\phi\left(\Phi^{-1}(1-c)\right)}{1-c} \\
& z_{2}=\frac{1}{1-c} \int_{0}^{1-c} \Phi^{-1}(q)^{2} d q=1-\frac{\phi\left(\Phi^{-1}(1-c)\right)}{1-c} \Phi^{-1}(1-c)
\end{aligned}
$$

depending on the confidence level $c<1^{2}$.

[^0]Putting this together, we get a third expression for the index of satisfaction.

$$
\begin{align*}
r_{\varrho}(\lambda) \approx-\lambda p\left(\mu+\frac{1}{2} \mu^{2}+\frac{1}{2} \Sigma\right)+ & \frac{\phi\left(\Phi^{-1}(1-c)\right)}{1-c}|\lambda| p \sqrt{\Sigma} \\
& \cdot\left(\sqrt{(1+\mu)^{2}+\frac{1}{2} \Sigma}+\frac{1}{2} \operatorname{sgn} \lambda \frac{(1+\mu)^{2}+\frac{1}{3} \Sigma}{(1+\mu)^{2}+\frac{1}{2} \Sigma} \Phi^{-1}(1-c) \sqrt{\Sigma}\right) \tag{3}
\end{align*}
$$

This result agrees with (2) to lowest order in μ and $\sqrt{\Sigma}$.

[^0]: ${ }^{1}$ The objective random variable is the profit, which is the negative of the loss.
 ${ }^{2}$ The trick to these integrals is to realize that $\phi^{\prime}(z)=-z \phi(z)$.

