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Let us consider the expected shortfall index of satisfaction for a very simple portfolio: A shares in an
asset whose value today is p > 0 and whose horizon value P is lognormal.

Let us assume that the objective measure is mark-to-market profit; therefore in the text’s notation, we
have (apologies for the signs)
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where the invariant total return is normal X ~ A (u, ) with mean x and variance ¥ > 0. The risk measure
is
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for confidence level ¢ < 1 in terms of the quantile function for the objective value.
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Exact Version

In this simple situation, we can actually calculate a relatively simple expression for the value of index of
satisfaction. It will be useful to compare this below with the approximate value we get from the Cornish-
Fisher expansion.
We proceed to evaluate the exact version by considering the CDF of the objective.
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where ®(-) is the CDF of a standard normal.



The quantile, which is the inverse of the distribution function, is therefore
F5(q) = \p (ewsgnkx/idfl(q) _ 1)

So can proceed to evaluate the index of satisfaction.
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where the last line is achieved by the change of variable z = ®~1(g) and ¢(z) = ®’(z) is the density of a
standard normal.
Since
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we have the final result,
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Short Horizon Approximation

For short horizons, the mean and variance of the total return invariant are small. To lowest order, the exact
result in (1) can be approximated by
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which is in the form o(L) = E L + k, std L that we have seen before.

Let us spend a moment interpreting this. A long (A > 0) is less risky if the asset has a positive expected
return (> 0), and a short (A < 0) is less risky if the asset has a negative expected return (1 < 0). In
contrast, positive variance increases risk for any non-zero position.

This all seems quite reasonable for a rational risk measure.

Cornish-Fisher Approximation

It is unusual to have a simple analytic expression for the expected shortfall such as (1). This is why the
Cornish-Fisher expansion can be useful in practice. In order to use this, we need several low central moments
for the loss. In a Delta-Gamma setting, we can replace the objective by the quadratic
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Figure 1: Factor for Delta-Gamma expected shortfall

hence ©) = 0, Ay = Ap, and I'y = Ap. Let us define a new objective' to represent this approximation.
Ex=Ap (X +35X7)
Is is straight-forward (but tedious) to work out that the first several central moments of this are
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The third-order Cornish-Fisher expansion for expected shortfall in general is
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with coefficients
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depending on the confidence level ¢ < 1°.

!The objective random variable is the profit, which is the negative of the loss.
2The trick to these integrals is to realize that ¢’ (z) = —z ¢(2).



Putting this together, we get a third expression for the index of satisfaction.
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This result agrees with (2) to lowest order in z and V/X.



