
Quantitative Risk Management
Final Project

John Dodson

December 18, 2019

This assignment is not a regular homework. It is a group project worth half of the module grade for
the fall term. If you discuss this assignment with anyone other than the instructor, please summarize those
discussions in a statement acknowledging your collaborations.

Please e-mail or share your solution with me before 5:30 PM on Wednesday, December 18. Please turn
in your report directly to me. You are welcome to discuss the project with our TA, but she will not be grading
it.

Introduction

For this project, I would like you to return to the analysis of the NASDAQ-100 index options we worked with
previously. For the October 30 assignment, you fit—and rejected—a normal to the implied distribution of
the logarithm of the terminal value of the index. For the November 13 assignment, you fit generalized Pareto
distributions to the left and right tails of the logarithm, and we discussed the consequence of the apparently
Fréchet right tail.

We have since learned about variance mixtures of normals, including the Student’s-t, which is the basis
for many empirical examples in the text. The symmetric version is probably not useful in the risk-neutral
setting, but the asymmetric version might be. In this project, I would like you to produce a report discussing
the applicability of this distribution to approximating index option prices.

Skewed Student’s-t

Let’s recall the definition of the Generalized Hyperbolic version of the skewed Student’s-t random variable.
Let Q be a random variable with positive support. A Normal mixture model can be specified as

X|Q ∼ N (µ+ βQ,Q)

in terms of which
fX(x) =

∫ ∞

0

1√
2πq

e
−1
2q

(x−µ−βq)2
fQ(q) dq

where the mixing variable is a Reciprocal Gamma,

fQ(q) =

(χ
2

) ν
2

Γ
(
ν
2

)q− ν
2
−1e

− χ
2q for χ > 0, ν > 2

1

Problem Statement

Please produce a report or presentation explaining the problems below, your solution approach, intermediate
and final results, and potential interpretations. Please include your complete code either inline or in an
appendix.

1. Evaluate the integral E
[
eX
]
in terms of the (real) parameters χ, ν, β and µ and note any conditions

required for the result to be finite. In the subsequent statistical exercise, we can use this result to
eliminate µ from the fit by fixing this value to the implied forward of the index F T

t . (10 points)

2. Using the technique we developed for the November 13 assignment—which you should describe in
your report—fit the remaining parameters, χ, ν, and β, within the constraints defined above, to the
index options prices from October 28, 2019. (10 points)

3. Evaluate the Black-Scholes implied volatilities for both the original data and the model you have fit
and plot them versus log-moneyness1. (10 points)

Hints: For (1.) write down the expectation in terms of the more general inverse gaussian mixing variable
and complete the square in the exponent. For (2.) you already have the distribution function for the standard-
ized skewed Student’s-t. You also have formulas for the mean and variance of the generalized hyperbolic
in the same location-scale family. So you can construct the distribution function forX with an affine trans-
formation, and you can numerically integrate it to get the distribution function. For (3.) use the model to
evaluate theoretical put prices based on E

[
max

(
0,K − eX

)]
from which you can get implied volatilities

by inverting Black-Scholes in the usual manner.

Grading Rubric

Twenty out of fifty points will be based on the follow criteria:

• Your report or presentation is clear and professional. (5 points)

• Your derivations are clear and complete. (5 points)

• Your code is clear and documented. (5 points)

• You include appropriate citations and collaboration ackowledgements. (5 points)

Solution

Fixing the expectation

We will be using this model to price European-style index options. One of key tenants of arbitrage-free
valuation of financial derivatives is that the forward price F T

t is identified with the (risk-neutral) expected
terminal value ST (ω) for ω ∈ Ft. Since we are identifying the skewed Student’s-t r.v.X with the logarithm
of this value, the expectation, conditioned on the present sigma algebra, is

F T
t = E

[
eX
]
=

∫ ∞

−∞

∫ ∞

0
ex · 1√

2πq
e

−1
2q

(x−µ−βq)2
(χ
2

) ν
2

Γ
(
ν
2

)q− ν
2
−1e

− χ
2q dq dx

1log-moneyness is log
(
K/FTt

)
in terms of the strike priceK

2

Completing the square in the exponent, we see that

ex · e
−1
2q

(x−µ−βq)2
= eµ · e

−1
2q

(x−µ−(β+1)q)2 · eq
(
β+

1
2

)

but from the density of the generalized hyperbolic r.v. with ψ′ = −2β − 1 and β′ = β + 1 we know that

1 =

∫ ∞

−∞

∫ ∞

0

1√
2πq

e
−1
2q

(x−µ−β′q)2 χ
ν
2

(√
χψ′
)− ν

2

2K ν
2

(√
χψ′
) q− ν

2
−1e

− χ
2q

− qψ′
2 dq dx

where ψ′ > 0 requires β < −1
2 . So

F T
t = eµ

2
(χ
2

) ν
2

Γ
(
ν
2

)
χ
ν
2

K ν
2

(√
χ (−2β − 1)

)(√
χ (−2β − 1)

) ν
2

or

µ = log
(
F T
t

)
− log

(
2

Γ
(
ν
2

)K ν
2

(√
χ (−2β − 1)

)(
1
2

√
χ (−2β − 1)

) ν
2

)
Since we can reset the numéraire to be the forward price, and the logarithm of one is of course zero, I

use this definition henceforth:

µ(χ, β, ν) = µ0 = − log

(
2

Γ
(
ν
2

)K ν
2

(√
χ (−2β − 1)

)(
1
2

√
χ (−2β − 1)

) ν
2

)

The full density function of the skewed-Student’s-t is

fX(x) =
2

Γ
(
ν
2

) eβ(x−µ)

2
ν+1
2
√
πχ

K ν+1
2

(
|β|√χ

√
1 + (x−µ)2

χ

)(
|β|√χ

√
1 + (x−µ)2

χ

) ν+1
2

(
1 + (x−µ)2

χ

) ν+1
2

I implemented this as follows in Julia2:

using SpecialFunctions
using QuadGK

"expected value of e^X for skewed-t r.v. X with μ = 0."
function tskew_mgf1(χ,β,ν)

if χ ≤ 0.
throw(DomainError(χ,"requires positive χ"))

end
if β ≥ -0.5

throw(DomainError(β,"requires β < -1/2"))
end
a = sqrt(χ*(-2β-1))
n = ν/2

2https://julialang.org/

3

https://julialang.org/

return 2/gamma(n)*besselk(n,a)*(a/2)^n
end

"density at x of a skewed Student's-t r.v. with parameters μ, χ, β, ν"
function tskew_dens(x,μ,χ,β,ν)

if χ ≤ 0.
throw(DomainError(χ,"requires positive χ"))

end
if ν ≤ 2.

throw(DomainError(ν,"requires ν > 2"))
end
n = (ν+1)/2
a = sqrt(1+(x-μ)^2/χ)
if abs(β) < eps()

return a^(-2n)*gamma(n)/gamma(n-1/2)/sqrt(π*χ)
end
b = abs(β)*sqrt(χ)
c = β*(x-μ)
return 2*besselkx(n,a*b)*exp(c-a*b)*(b/(2a))^n/gamma(n-1/2)/sqrt(π*χ)

end

"""distribution function, or its complement, at x
of a skewed Student's-t r.v. with parameters μ, χ, β, ν"""
function tskew_dist(x,μ,χ,β,ν;comp=false)

if x ≤ μ
F = quadgk(x->tskew_dens(x,μ,χ,β,ν),-Inf,x)[1]

else
F = quadgk(x->tskew_dens(x,μ,χ,β,ν),x,Inf)[1]

end
if (x ≤ μ && comp) || (x > μ && !comp)

return 1-F
else

return F
end

end

Note that I am using besselkx() for x 7→ exKλ(x) in the density, which limits underflow for large
arguments. Also, I am setting up the integration range so that the integrand in monotonic in calculating the
distribution function, which improves accuracy for large magnitude arguments.

Fitting the Parameters

Reprising the arguments from the October 30 assignment, a sequence of European-style options prices for
different strike prices yields a partial description of the implied distribution function of logST .

FlogST |Ft (x
⋆
1) =

pt (K2, T)− pt (K1, T)

e−r(T−t) (K2 −K1)
(1)

4

for some x⋆1 between logK1 and logK2.
If we wish to fit a parametric random variable to this implied distribution, a convenient goodness-of-fit

function is the Anderson-Darling metric,

A2(θ) = n

∫ ∞

−∞

(Fn(x)− F (x|θ))2

F (x|θ) (1− F (x|θ))
dF (x|θ)

= −n+ n

n∑
i=1

(
F 2
i−1 − F 2

i

)
log (F (xi|θ)) +

(
(1− Fi)

2 − (1− Fi−1)
2
)
log (1− F (xi|θ))

I implemented this as

"goodness-of-fit based on the Anderson-Darling statistic"
function obj(θ)

χ,β,ν = θ
if χ ≤ 0. || β ≥ -0.5 || ν ≤ 2.

return NaN
end
n = length(k_pts)
μ₀ = -log(tskew_mgf1(χ,β,ν))
F = map(x->tskew_dist(x,μ₀,χ,β,ν,comp=false),k_pts)
Fc = map(x->tskew_dist(x,μ₀,χ,β,ν,comp=true),k_pts)
terms = (imp_dist_pts[1:end-1].^2 .-imp_dist_pts[2:end].^2).*log.(F)+

((1 .-imp_dist_pts[2:end]).^2 .-(1 .-imp_dist_pts[1:end-1]).^2).*log.(Fc)
return n*(sum(terms)-1)

end

which uses the arrays k_pts and imp_dist_pts that implement (1).

strike = [0.; [parse(Float64,elem[1][1].text) for elem in table_rows]];
put_close = [0.; [parse(Float64,elem[2][1].text) for elem in table_rows]];
log_money = log.(strike[2:end]/fwd);
k_pts = [log_money[1] ; (log_money[1:end-1]+log_money[2:end])/2 ; log_money[end]];
imp_dist_pts = [0.; diff(put_close)./diff(strike)/disc ; 1.];

The results I got using Optim.optimize with Nelder-Mead are in Table 1

χ 8.167× 10−3

β −30.38
ν 5.791

Table 1: Skewed Student’s-t parameters for the implied distribution of the logarithm of the NASDAQ-100
index on the morning of December 20, 2019, as of the close of the options market on the previous October 28.

It may be worth noting that more than 99% of the sum in the Anderson-Darling came from the half of
the options with strike greater than 6925 and less than 8775. Neither wing contributes much to the fit using
this metric, and this is apparent in the results.

5

Implied Volatilities

Calculating implied volatility from listed index options can be challenging because of the wide range of strike
prices. Option prices are most sensitive to implied volatility for strike prices close to the implied forward
price, and this sensitivity falls off quickly. So the demands on precision can be high.

Before we look at a possible implementation, let’s go through the reduced-form Black-Scholes solution
for options with European-style exercise. The typical Black-Scholes equation involves six quantities in
addition to the option value: the spot price, the strike price, the term to expiration, the risk-free discount
rate, the implied dividend rate, and the implied volatility rate. Note that since put/call parity means that
otherwise-identical puts and calls have the same implied volatility, you only need to analyze the put or the
call, not both.

These six variables in the Black-Scholes formula can be reduced to two. Consider a put for example:

p

Fe−rT
= ekΦ

(
k

ς
+
ς

2

)
− Φ

(
k

ς
− ς

2

)
for log-moneyness k = logK/F in terms of the forward priceF = Se(r−δ)T and strike priceK and terminal
standard deviation ς = σ

√
T in terms of the implied volatility rate and term T .

For out-of-the-money options, the values are near to zero, where floating point precision is highest. But
for in-the-money options, prices are significantly non-zero and precision is limited to the size of the mantissa.
It would be preferable to work with values near to zero for both in-the-money and out-of-the-money options.
A natural way to bring this about is to work with “standardized time-value”:

vmkt (logK/F) =
p− e−rT max (0,K − F)

Fe−rT
=
c− e−rT max (0, F −K)

Fe−rT

vBS(k, ς) = ekΦ

(
k

ς
+
ς

2

)
− Φ

(
k

ς
− ς

2

)
−max

(
0, ek − 1

)
(2)

To re-value the puts under the model, we need to do integrals of the form

vmodel(k) =

∫ k

−∞

(
ek − ex

)
fX (x|µ = µ0) dx−max

(
0, ek − 1

)
I implemented this as

"normalized time-values"
v_mkt = put_close[2:end]/disc/fwd.-map(k->max(0.,expm1(k)),log_money);

function v_model(k)
χ,β,ν = θ_fit
μ₀ = -log(tskew_mgf1(χ,β,ν))
if k < 0.

return quadgk(x->(exp(k)-exp(x))*tskew_dens(x,μ₀,χ,β,ν),-Inf,k)[1]
else

return quadgk(x->(exp(x)-exp(k))*tskew_dens(x,μ₀,χ,β,ν),k,Inf)[1]
end

end

6

−1.2−1.1 −1 −0.9−0.8−0.7−0.6−0.5−0.4−0.3−0.2−0.1 0 0.1 0.2 0.3

0.1

0.2

0.3

log-moneyness k

st
an
da
rd

de
vi
at
io
n
ς

Figure 1: Implied terminal standard deviations from NASDAQ-100 options.

6,800 7,000 7,200 7,400 7,600 7,800 8,000 8,200 8,400 8,600 8,800

0.15

0.2

0.25

0.3

strikeK

im
pl
ie
d
vo
la
til
ity

ra
te
σ

Figure 2: Near-the-money implied volatility from NASDAQ-100 options.

Since (2) cannot be inverted to give a simple expression for the function v 7→ ς(k, v) we have to use
numerical techniques to approximate this inversion. Existence and uniqueness is theoretically guaranteed as
long as the market data is consistent with no-arbitrage, because the time-value is zero at zero volatility and
strictly increasing (theoretically) without bound in volatility for any log-moneyness. Please see the Appendix
for details on the implementation I used, which is a standard combination of the Newton-Raphson method
and the bisection method. This seems to require at most about thirty evaluations per option to converge with
our data.

The fit is not perfect, but it seems to have some accurate stylized features, including the linear wings and
the negative slope at-the-money. Presumably allowing for a positive ψ would improve the fit further.

7

Appendix: Implied Volatility

I chose to implement a three-phase algorithm for approximating the implied volatility based on matching
the logarithm of the standardized time-value of an option with the equivalent Black-Scholes value. The first
phase is to bound the result with a finite interval. The second and third phase is to shrink this interval using
either the Newton-Raphason algorithm or the bisection method.

The Newton-Raphson algorithm requires a function for the derivative of the standardized time value with
respect to the implied standard deviation, but this is closely related to the Black-Scholes “vega” and has a
simple expression.

I try to be careful to preserve precision, such as with the use of erfcx() for x 7→ ex
2
(1− erf(x)) which

is more accurate for large positive arguments.

using SpecialFunctions

"Black-Scholes log normalized time-value"
function log_v_bs(k,ς)

if abs(k) < eps()
return log(erf(ς/2/sqrt(2)))

else
return -(k/ς-ς/2)^2/2+log(sign(k)/2*

(erfcx(sign(k)/sqrt(2)*(k/ς-ς/2))
-erfcx(sign(k)/sqrt(2)*(k/ς+ς/2))))

end
end

"Black-Scholes log normalized time-value ivol sensitivity"
function log_v_bs_vega(k,ς)

if abs(k) < eps()
return exp(-(ς/2/sqrt(2))^2)/sqrt(2π)/erf(ς/2/sqrt(2))

else
return sign(k)/sqrt(π/2)/

(erfcx(sign(k)/sqrt(2)*(k/ς-ς/2))
-erfcx(sign(k)/sqrt(2)*(k/ς+ς/2)))

end
end

"implied volatility from normalized time-value"
function ς_imp(k,v)

N = 100 # maximum number of evaluations
tol = 1.e-12
log_v = log(v)
ς_lo = 0.
ς_hi = sqrt(2π)*v
while N > 0

if log_v > log_v_bs(k,ς_hi)
N -= 1

8

ς_lo = ς_hi
ς_hi *= 2.

else
break

end
end
ς0 = (ς_lo+ς_hi)/2.
while N > 0

ς1 = ς0+(log_v-log_v_bs(k,ς0))/log_v_bs_vega(k,ς0)
N -= 1
if abs(ς1-ς0) < tol

return ς1
end
diverge = ς1 > ς_hi || ς1 < ς_lo
if ς1 > ς0

ς_lo = ς0
else

ς_hi = ς0
end
ς0 = diverge ? (ς_lo+ς_hi)/2. : ς1

end
throw(ErrorException("failed to meet convergence criterion "*

"within evaluation count limit"))
end

9

