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Maxima

The n-block maxima1 is a random variable defined as

Mn , max (X1, . . . ,Xn)

for i.i.d. random variables Xi with distribution function F (·).
We are interested in n→∞. If there exists a sequence of
normalizations of Mn (with cn > 0) such that

lim
n→∞

F n (cnx + dn)

converges to a non-degenerate distribution function, H(x),
then

H(x) =


exp

(
−(1 + ξx)−1/ξ

)
ξ > 0 and x ≥ −1/ξ

exp (−e−x) ξ = 0

exp
(
−(1 + ξx)−1/ξ

)
ξ < 0 and x < −1/ξ

1Use 1− F (−x) and −max (−X1, . . . ,−Xn) for the minima.
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This remarkable result, the Fisher–Tippett–Gnedenko
theorem (1927–28/1943), is analogous to the central limit
theorem for an appropriately normalized Sn ,

∑n
i=1 Xi :

lim
n→∞

(
1√
n
Sn −

√
nµ

)
∼ N

(
0, σ2

)
Generalized Extreme Value Distribution
H(·) from above is called the generalized extreme value
distribution and it has a single parameter ξ.

Types

The GEV is continuous in ξ for each x , but its sign has can
be used as a classifier

I ξ > 0 is the Fréchet with finite moments to order 1/ξ.

I ξ = 0 is the Gumbel with finite moments of all orders.

I ξ < 0 is the Weibull with a finite right endpoint.
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The GEV result is about i.i.d. sequences of r.v.’s. We have
seen that timeseries of innovations of financial invariants are
independent, but not generally identically-distributed.

Stationary Time Series

If the normalized n-block maxima of the associated strict
white noise for a stationary time series process has a limiting
distribution H(·) in one of the GEV classes, then there exists
0 < θ ≤ 1 such that the limit of the normalized n-block
maxima of the innovations is Hθ(·).

I In particular, the n-block maxima of the innovations can
be re-normalized to yield the same GEV distribution as
the associated white noise with the same ξ.

I Effectively ñ = θn in the limit, which can be thought of
as representing clustering in the extreme values of the
innovations for θ < 1.
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Threshold Exceedances

Typically we are not as interested in the n-block maxima as
we are in the relative frequency of a range of extreme
outcomes. A result in this regard leads to the generalized
Pareto distribution that we have already seen.

Generalized Pareto
The distribution function with scale parameter β > 0 is

G (x) =


1− (1 + ξ x/β)−1/ξ ξ > 0 and x ≥ 0

1− e−x/β ξ = 0 and x ≥ 0

1− (1 + ξ x/β)−1/ξ ξ < 0 and 0 ≤ x < −β/ξ

Excess Distribution
If r.v. X has distribution F (·), the excess distribution is

Fη(x) , P [X − η ≤ x |X > η] =
F (x + η)− F (η)

1− F (η)
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Threshold Exceedances

Pickands–Balkema–de Haan theorem (1974–75)

Iff X is GEV with parameter ξ and right endpoint xF , then
there exists β(η) > 0 such that

lim
η→xF

sup
0≤x<xF−η

|Fη(x)− G (x ; ξ, β(η))| = 0

That is, as the threshold level is raised, the excess
distribution becomes arbitrarily close to a generalized Pareto
distribution with the same shape parameter as the GEV.

Mean Excess
Note that in the limit η → xF , β(η) becomes linear. Since
E [X − η|X > η] = β(η)/(1− ξ), the mean excess also
becomes linear in the threshold for ξ < 1.
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Generalized Extreme Value
It is possible to estimate the shape of the limiting GEV from
a sample of n-block maxima of i.i.d. data using maximum
likelihood, but this is very inefficient, since you effectively
reduce all but a fraction 1/n of your data to partial ranks.

Generalized Pareto
In the GP setting you can use a higher fraction of the data
depending on how you choose the threshold; and we can
make use of results such as the limiting linearity of the mean
excess above to help set it.

Exceedance Point Process
In a strict white noise setting, the interval between threshold
exceedances is an exponential r.v. in the threshold limit, so
we can use even more of the data taking that into account.
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GP Maximum Likelihood

We have already worked with the MLE for GP. In this
setting, we form the log-likelihood of the GP approximation
of the threshold excess

log L(ξ, β) =

− Nη log β −
(

1 +
1

ξ

) Nη∑
i=1

log

(
1 + ξ

x(N−Nη+i) − η
β

)
where Nη is the number of observations that exceed η and
the N observations are indexed by their ranks. The estimator
is of course (

ξ̂, β̂
)

= arg max
(ξ,β)

log L(ξ, β)
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Hill Estimator

In the Fréchet class, for ξ > 0, the distribution function has
a tail of the form F̄ (x) = x−1/ξL(x) for some slowly varying
function L(·).

Hill Estimator
The Hill estimator is based on the observation about the
mean excess of the logarithm of X .

E [logX − log η|X > η] ≈ L(η)η−1/ξξ

F̄ (η)
≈ ξ

in the limit η →∞ from Karamata’s theorem. The
estimator is hence

ξ̂
(H)
k =

1

k

k∑
i=1

log x(n−k+i) − log x(n−k)

in terms of the observations indexed by their ranks.
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Points over Thresholds

In this model, the order of the data matter. Let t = i/n for
i = 1, . . . , n. Define a state space X for (t, x). The marked
point process defined by X exceeding some high threshold η
before t has intensity rate

τ(x) , Hξ,µ,σ(x)

where σ, µ represent cn, dn, and excess magnitude

F̄η(x) = Ḡξ,β(x)

for scale β = σ + ξ(η − µ).

Estimator
The likelihood function for this model is given by

log L(ξ, σ, µ) = log LGP(ξ, σ; x − η)− τ + Nη log τ

hence τ̂ = Nη; and from the MLE of the GP, we can infer
µ̂, σ̂.
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Generalized Pareto Loss Distributions

The convergence of excess loss to a GP random variable can
be used to calculate VaR and ES. In particular, we can set
the (right) tail mass θ to some sufficiently small value, then

FL(x) ≈


? x < η

1− θ
(

1 + ξ x−ηβ

)−1/ξ
(ξ > 0 and x ≥ η) or

(ξ < 0 and η ≤ x < η − β
ξ )

1 ξ < 0 and x ≥ η − β
ξ

and we can invert this to get

VaRα ≈ η +
β

ξ

((
θ

1− α

)ξ
− 1

)
for 1− θ ≤ α < 1
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Generalized Pareto Loss Distributions

Furthermore, we can integrate the quantile function to get
expected shortfall (for ξ < 1),

ESα ≈ η +
β

ξ

(
1

1− ξ

(
θ

1− α

)ξ
− 1

)
for 1− θ ≤ α < 1

Recalling our previous comparison of VaR and ES in terms of
the Cornish-Fisher moment expansion, we again see that
there is a fundamental equivalence to the extent that ξ ≈ 0.

lim
α→1

ESα
VaRα

=
1

1− ξ
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