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Introduction

The analysis of financial timeseries naturally separates into
the analysis of marginal univariate random variables and
dependent multivariate (vector) random variables. We will
discuss empirical properties of both aspects.
Samples
Traditionally statisticians seek out i.i.d. samples. We will not
be so lucky as to observe these directly with financial data.
We will generally be able to retain the independence
assumption if we use innovations such as log-returns for risk
factors, but we will not be able to assume that observations
through time are identically distributed.

▶ For example, the efficient market hypothesis says that
changes in asset prices should be independent from
period to period.
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Random Variables

Definitions
A random variable is a (real) quantity whose value is not
known with current information (but may be known in the
future). These can be represented mathematically as
measurable functions of a sample space, X : Ω 7→ R. We try
to denote them by upper-case Roman letters. We try to
denote a placeholder for a particular value obtained by a
random variable in its state space by the corresponding
lower-case letter x ∈ X(Ω) ⊂ R. There is a probability
associated with every measurable subset A ⊂ R, which
might consist of a combination of intervals and points. The
pre-image ω = X−1(A) ∈ F of such sets are called events.
The corresponding probability is the measure of the event
µ(ω) = P [X ∈ A|F ]. F is the conditioning sigma algebra.
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Random Variables

This structure lends itself to a measure theory interpretation,
where the probability associated with a set is simply the
integral of the probability density over that set.

P [X ∈ (a, b)] =
∫ b

a
fX(x) dx

If X ranges over the real numbers, R, then fX(·) must have
certain properties. In particular, it must be a non-negative
(generalized) function and

lim
x→−∞

fX(x) = 0 lim
x→∞

fX(x) = 0∫ ∞

−∞
fX(x) dx = 1



Empirical
Properties of

Financial Data

John Dodson

Introduction

Random Variables
Characterizations
Transformations
Expectation
Law of Large Numbers
Monte Carlo

Central Moments
Normal Distribution
Central Limit Theorem

Change of Measure

Random Vectors
Independence
Conditional/Marginal
Dependence

Stylized Facts
Univariate
Multivariate

.
.
.

.

.
.

Characterizations

In addition to the density function, there are at least three
other characterizations of a real random variable
▶ density function fX(x)
▶ distribution function FX(x) =

∫ x
−∞ fX(x′) dx′

▶ quantile function QX(p) = F−1
X (p)

▶ characteristic function ϕX(t) =
∫∞
−∞ eitxfX(x) dx

This last is based on the Fourier transform, where i2 = −1.
While the density function is the most common, these four
representations are all equivalent.

Hint: they can be distinguished by the nature of their
arguments; resp. a state, an upper bound on a state, a
probability, and the reciprocal of a state.
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Transformations

If we have a characterization of a random variable X, it is
natural to ask if we can derive the characterization of a
function of that variable Y = h(X), or of a sample,
{X1,X2, . . . ,Xn}, Y = h (X1,X2, . . . ,Xn).
This is in general difficult, but there are some notable easy
cases.
▶ f, F, and Q for an increasing, invertible function

fY(y) =
fX

(
h−1(y)

)
h′ (h−1(y))

FY(y) = FX
(
h−1(y)

)
QY(p) = h (QX(p))

▶ ϕ for the mean of a sample, Yn = 1
n
∑n

j=1 Xj

ϕYn(t) =
[
ϕX

( t
n
)]n
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Expectation
We will talk in detail about the topic of estimation later, but
if you were asked to give a “best guess” about the value of
random variable, the expected value would be a natural
answer.
The expected value is a density-weighted average of all
possible values

EX =

∫ ∞

−∞
x fX(x) dx

=

∫ ∞

−∞

(1
2 − FX(x)

)
dx (!)

=

∫ 1

0
QX(p) dp

= −iϕ′
X(0)

Ex. evaluate each for a Dirac spike, fX(x) = δ(x − x0)
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Expectation
While it may not be possible to evaluate the characterization
of a function of a random variable, it is generally possible to
evaluate the expected value of a function of a random
variable.

E h(X) =
∫ ∞

−∞
h(x)fX(x) dx

The probability measure of a measurable subet A is the
expectation of the indicator function for the subset

P [X ∈ A] = E 1A(X)

In general, the expected value of a function of a random
variable is not just the value of the function at the expected
value of the random variable.

E h(X) ̸= h (EX)

Do not make this mistake!



Empirical
Properties of

Financial Data

John Dodson

Introduction

Random Variables
Characterizations
Transformations
Expectation
Law of Large Numbers
Monte Carlo

Central Moments
Normal Distribution
Central Limit Theorem

Change of Measure

Random Vectors
Independence
Conditional/Marginal
Dependence

Stylized Facts
Univariate
Multivariate

.
.
.

.

.
.

Law of Large Numbers

A foundational result connects the expectation of a random
variable with the sample mean.
Law of Large Numbers

lim
n→∞

1
n

n∑
j=1

Xj = EX almost surely

We will demonstrate the weak version of this result using the
characteristic function and then look at some numerical
results.
The key to the derivation is to recognize that

ϕYn(t) =
(

1 +
itEX

n + o
( t

n
))n

→ eitEX
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Monte Carlo
The LLN, combined with information technology, brought
about a revolution in applied mathematics last century,
introducing a completely novel way to evaluate integrals.
▶ integrals are expectations of functions of random

variables∫
h(x) dx =

∫ h(x)
fX(x)

fX(x) dx = E
h(X)
fX(X)

▶ expectations are means of random samples

E
h(X)
fX(X)

a.s.
= lim

n→∞
1
n

n∑
j=1

h(xj)

fX(xj)

▶ you can evaluate an arbitrarily complicated integral if
you can

1. identify an appropriate random variable
2. generate a very large sample of random variates
3. cheaply evaluate the integrand and density function
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Central Moments

Denote the expected value and standard deviation of a
random variable X by µ and σ.
The standardized transformation of X is

Z =
X − µ

σ

Its characteristic function is

ϕZ(t) = e−iµ
σ

tϕX
( t
σ

)
The moments of Z measure the skewness, kurtosis, etc. of
X. The easiest way to evaluate these is to note that

EZn = (−i)nϕ(n)
Z (0)

N.B.: Moments do not always exist, and they are generally
not adequate to characterize a random variable.
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Normal Distribution
The most important distribution for X ∈ R is the normal or
gaussian distribution. It takes two parameters, and is
denoted X ∼ N

(
µ, σ2). µ is often called the mean.

fX(x) = 1√
2π e−

1
2(

x−µ
σ )

2 1
σ

FX(x) = 1
2 erfc

(
µ− x√

2σ

)
QX(p) = µ−

√
2σ erfc−1 (2p)

ϕX(t) = eiµt−1
2σ

2t2

Normal density
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Central Limit Theorem

A foundational result connects the normal distribution with
the Law of Large Numbers.
Central Limit Theorem
For any random variable X with finite expected value µ and
standard deviation σ,

lim
n→∞

√
n

1
n

n∑
j=1

Xj − µ

 ∼ N
(
0, σ2) in distribution

That is, the deviation between the sample mean and the
expected value is approximately normal, with standard
deviation equal to the standard deviation of the random
variable divided by the square root of the sample size.
This result can be demonstrated by considering the
characteristic function of the RHS above.
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Change of Measure
Recall, a random variable is a measurable function of the
sample space with respect to a probability measure.
It can be useful to work with the same random variable
under an alternate probability measure.
Radon-Nikodým theorem
If P and P′ are equivalent measures, then there is a random
variable Z ≥ 0 such that for any random variable X

E′X = E (ZX)

For example, say that X ∼ N(µ, σ2) under P, but
X ∼ N(µ′, σ2) under P′. Then the Radon-Nikodým
derivative is

Z = e−
X
σ

(
µ
σ
−µ′

σ

)
+

1
2(

µ
σ )

2−1
2
(

µ′
σ

)2

and this same Z would apply to any function of X.
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Multivariate Random Variables

The support of a random variable is the union of all
measurable sets in the state space. So far, we have discussed
r.v.s whose support is R. This naturally specializes to r.v.s
whose support is an interval in R such as (0,∞) or [0, 1]. An
important special case is when the support is countable, such
as a just the naturals N = {0, 1, 2, . . .}, e.g. a Poisson r.v.
Random Vectors
When the support is R⊗ · · · ⊗ R = Rn, we have random
vectors. In this setting, rather then working in an abstract
version of the preceding, it can be useful to consider this as
n univariate random variables connected by a copula. We
will introduce this below.
Another class of random variables that we will encounter are
random scalars. The state space for these are
positive-definite tensors of some particular dimension and
rank, e.g. a Gamma or Wishart r.v.
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Independence
Before we define dependence, it is useful to define
Independence
Random variables X and Y are independent iff

F(X,Y)(x, y) = FX(x)FY(y) (∗)

For all x, y. In particular,

E (XY) = (EX) (EY)

We can differentiate (∗) to see that

f(X,Y)(x, y) = fX(x)fY(y)

It is also true of the characteristic functions ϕX(t) ≜ E eitX

ϕ(X,Y)(tX, tY) = ϕX(tX)ϕY(tY)
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Marginal Density

From Fubini’s theorem, it is generally possible to derive
marginal densities for a joint density, regardless of any
dependence.

fX(x) =
∫ ∞

−∞
f(X,Y)(x, y) dy

fY(y) =
∫ ∞

−∞
f(X,Y)(x, y) dx

Of course, if X and Y are independent, then

f(X,Y)(x, y) = fX(x)fY(y)

but this does not need to be true in general.
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Conditional Density

Conditioning a random variable is a powerful concept!
▶ The marginal characterization of a dependent variable is

adequate if we do not know or care about the value of
any potentially related dependent variables

▶ Conditioning, on the other hand, allows us to
incorporate synthesis

Say we know the joint density of (X,Y), and we have learned
that an event, say Y = y, is true. We can adjust the
marginal distribution of X to account for this fact

fX|Y(x) = fX(x)
f(X,Y)(x, y)
fX(x)fY(y)

▶ Note the analogy here to the Radon-Nikodým change of
measure.
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Conditional Expectation

A natural application of conditioning is the conditional
expectation of a random variable.

EX|Y =

∫ ∞

−∞
x fX|Y(x) dx

Tower Property
Sometimes it is useful to condition on unknown events. In
this case, the conditional expectation is the same as the
unconditional expectation.

E (EX|Y) = EX

The lesson here is that conditioning has to exclude some
outcomes in order to be consequential.
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Dependence

To the extent that the joint density is not just a product of
the marginal densities, there is dependence.
Factorization
This ratio can be expressed as

fU (FX1(x1),FX2(x2), . . .) ≜
f(X1,X2,...)(x1, x2, . . .)

fX1(x1)fX2(x2) · · ·

Copula
Sklar’s theorem says fU : [0, 1]N 7→ R+ is a density function
that characterizes a new random variable, U, that
encapsulates the dependence structure of X. Independence
means fU ≡ 1.
Two random variables that have the same copula are said to
be co-monotonic.
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Stylized Facts for Financial Risk Factors
Univariate

Daily timeseries of asset returns have certain general
patterns that have been persistent enough to have become
stylized facts:
▶ Returns are not i.i.d. but show little serial correlation
▶ Absolute returns show profound serial correlation
▶ Conditional expected returns are close to zero
▶ Conditional variance appears to vary over time
▶ Extreme return appear in clusters
▶ Returns appear to be fat-tailed or leptokurtotic

Modern econometric models are able to reflect all of these
phenomena, and we will discuss this extensively in this
module.
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Stylized Facts for Financial Risk Factors
Multivariate

In the spirit of Sklar’s theorem, ideally we would like to
isolate common observations about multivariate financial
timeseries into marginal and dependence phenomena.
▶ Contemporaneous panel correlations are materially

non-zero
▶ Absolute returns show profound panel and serial

correlation
▶ Panel correlations vary over time
▶ Extreme returns tend to affect a number of components

together
A focus on linear correlations complicates the analysis,
because this measure of dependence is not strictly
determined by the copula. Other dependence measures, such
as Kendall’s concordance, may be more useful.
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Stylized Facts for Financial Risk Factors
Multivariate

In a multi-normal model, the conditional expectation of the
dependent variable (Y) is affine in the independent variable
(X).

EY|X = EY + β (X − EX)

This relationship is particular to normal margins combined
with a Gaussian copula.
More generally we might write

EY|X = EY + β(X) (X − EX)

If β(·) is an increasing function, this might be interpreted as
correlations increasing in extreme scenarios. In fact, it is
possible that the copula parameters (Gaussian or otherwise)
might be constant, but marginal leptokurtosis might be
responsible.
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