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Invariants

We are generally working with financial timeseries data when
calibrating models for the future value of financial variables
such as the mark-to-market profit/loss on an asset holding.
▶ In some cases, such as equity shares, this may mean

working with market prices (adjusted for dividends and
splits).

▶ In other cases, such as for bonds or derivatives, it may
mean working with derived quantities like yield or
implied volatility.

Invariants
If we expect today that the meaning of a financial quantity
of interest will remain uniform for the foreseeable future, we
term it an invariant quantity. For example, the price or yield
on a particular derivative or bond is not an invariant because
the instrument will expire or mature on a known date.
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Invariants

Indexes, Generics, & Synthetics
The challenge of identifying invariants for important classes
of financial variables is addressed variously through indexes,
synthetics, and generics.
▶ The S&P 500 equity index purports to represent the

performance of typical large-cap U. S. listed equity
securities.

▶ The Fed’s CMT indexes purport to represent the
performances of typical nominal U. S. Treasury bonds
of particular tenors.

▶ Bloomberg futures generics represent the performances
of the 1st, 2nd, etc. contract of a particular futures
product.

▶ The Cboe VIX index purports to represent the
performance of a delta-hedged position in one-month
S&P 500 index options.
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Invariants

Investibility & Relevance of Invariants
If we intend to use an invariant as a proxy for an actual asset,
it is important to think carefully about how the performance
of the proxy can differ from the performance of the asset.
▶ The S&P 500 is an investible index whose performance

can be replicated by an instantaneously fixed portfolio
of equity shares, its performance is influenced by its
dynamic composition and the dynamic correlation
between constituents, which is obviously not relevant
for individual equities.

▶ Other indexes, such as LIBOR (London interbank
offered rate) or OIS (Federal Funds rate overnight index
swap), are technically investible, but only by the
treasury departments of banks; in particular they are
not investible to broker-dealers.
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Invariants

Seasonality
Some financial timeseries exhibit predictable patterns in
time, or seasonality.
▶ A futures generic must roll whenever new contracts are

issued. The actual profit/loss from rolling over a futures
position is difficult to predict, and the generic makes no
attempt at all.
▶ For timeseries analysis purposes, you should omit roll

dates from generics for your analysis.
▶ There may be predictable events, such as earnings

announcements or the seasonal consumption patterns of
certain commodities, that should be modeled as
regimes.
▶ This is a specialized topic in econometrics that we will

not cover.
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Innovations

We generally only care about the most recent level for a risk
factor after our timeseries analysis is finished and we are
looking at the loss distribution for a particular portfolio. For
the analysis, we are more interested in the periodic
innovations of the risk factor, such as the log-returns or
simple differences.
▶ You can think of this as the difference operator applied

to the index or its (natural) logarithm, Xt ≜ ∇ log St.

Drift
The conditional expected value E [∇ log St|Ft−1] of the log
of an index is termed the index drift µt.

Volatility
The conditional standard deviation

√
var [∇ log St|Ft−1] is

termed the index volatility σt.
Note that the drift and volatility are Ft−1-measurable.
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Drift with ARMA

Standard white noise is a collection of i.i.d. r.v.’s Zt with
zero mean and unit variance. With Xt = µt + εt = µt + σtZt
an innovation of an invariant, we call εt the residual.
Autoregressive Moving Average
An ARMA(p, q) process for the drift can be expressed as

µt = ϕ0 +
p∑

i=1
ϕiXt−i +

q∑
j=1

θjεt−j

for parameters ϕ0, ϕ1, . . . , ϕp, θ1, . . . , θq.
▶ AR(1) is a simple model for mean reversion of the

innovations around a long-run level ϕ0/(1 − ϕ1).
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Volatility with GARCH

For financial data there is little to be gained in modeling
drifts of timeseries data, because typically |Xt| ≫ µt.
▶ Furthermore, if Xt is a log-return, the drift probably

ought to include a Jensen term like −1
2σ

2
t which

certainly does not fit into the ARMA form.

Generalized Autoregressive Conditional
Heteroskedasticity
A GARCH(p, q) process for the conditional variance can be
expressed as

σ2
t = α0 +

p∑
i=1

αiε
2
t−i +

q∑
j=1

βjσ
2
t−j

for non-negative parameters α0, α1, . . . , αp, β1, . . . , βq.
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Volatility with GARCH

Standardized Residuals
One application of GARCH models is to extract i.i.d. samples
from timeseries. We define the standardized residuals as

Zt =
Xt − µt

σt

To the extent that the GARCH model is correct, these are
strict white noise.

GARCH(1,1)
By far the most common implementation of this model is
GARCH(1,1). An important result about this model is that
the unconditional variance is

σ2 ≜ var [Xt] =
α0

1 − α1 − β1

as long as α1 + β1 < 1.
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Volatility with GARCH
In fitting GARCH(1,1) to asset returns, one often sees that
α̂0 is close to zero. From the previous slide, we see that
α0 = 0 requires that α1 = 1 − β1. So the integrated
GARCH(1,1) model has only one parameter.

σ2
t = (1 − β1) ε

2
t−1 + β1σ

2
t−1

Exponentially-weighted moving average
Since (with β1 = λ) this is equivalent to

σ2
t =

∑∞
i=0 λ

iε2
t−1−i∑∞

i=0 λ
i

IGARCH(1,1) is sometimes called the exponentially-weighted
moving average (EWMA) model, popularized by RiskMetrics.
▶ λ can be estimated using the technique discussed below.
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Volatility with GARCH

GARCH(1,1) Volatility Process
Under GARCH(1,1), innovations of the conditional variance
are mean-reverting. You can see this because

∇σ2
t = (1 − β1 − α1)

(
σ2 − σ2

t−1
)
+ α1σ

2
t−1∇Wt−1

where
∇Wt−1 =

ε2
t−1

σ2
t−1

− 1

is a stochastic increment uncorrelated to εt−1 (if the
residuals are unskewed).

▶ The mean-reversion rate is 1 − β1 − α1.
▶ Wt is not a Brownian motion. Maybe it’s fractional

Brownian motion?
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Refresher on Statistical Estimation

In classical statistics, the term sample has two related
meanings
▶ an (unordered) set of N values drawn from the state

space of some random variable X, {x1, x2, . . . , xN}
▶ a random variable consisting of N (independent) copies

X1, . . . ,XN of some random variable Xi ∼ X ∀i.
You can think of the former as a realization of the latter.
We can characterize the latter, which we will denote
hereafter by Y(N) ≜ (X1, . . . ,XN), as a random variable with

fY(N)(Y) = fX(X1) · · · fX(XN)

because we have assumed that the draws are independent.
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Estimator

An estimator is a function of a sample.
▶ If the sample is considered to be random, the value of

an estimator is a random variable subject to
characterization.

▶ If the estimator is applied to an actual sample,
consisting of draws from the sample space, the value is
non-random and is called an estimate.

Parameter Estimator
We will be mostly interested in estimating the parameters of
a characterization, which we will denote generically by θ. For
a univariate normal, for example, θ =

(
µ, σ2)′.

We will denote the parameter estimator by θ̂
(
Y(N)

)
where

Y(N) = (X1, . . . ,XN) is the sample represented by N
independent copies of the random variable X with a
characterization parameterized by θ.
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Maximum Likelihood Estimator
Since we have the distribution of the sample, perhaps in
terms of sufficient statistics, it is natural to define an
estimator for the parameters as the value of the parameters
such that the sample observed is “most likely”. That is,

θ̂(y) = argmax
θ

fY(N)|θ(y)

where the sample is y = (x1, . . . , xN).
Important Example
Say X ∼ N (µ, σ2) and we have a sample
Y(N) = (X1, . . . ,XN). The density function of the sample is

fY(N)(y) = (2πσ2)−N/2e
−1
2σ2

∑N
i=1(xi−µ)2

The MLE is(
µ̂

σ̂2

)
= arg min

(µ,σ2)′

1
σ2

(
1
N

N∑
i=1

x2
i − 2µ 1

N

N∑
i=1

xi + µ2
)
+log σ2
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Maximum Likelihood Estimator
The solution to this (the MLE for a univariate normal) is

µ̂ =
1
N

N∑
i=1

xi =
x1
1′1

σ̂2 =
1
N

N∑
i=1

x2
i −

(
1
N

N∑
i=1

xi

)2

=
xx′
1′1 − 1′x′x1

1′11′1

This result extends to the multivariate case X ∈ RM whereby
x has M rows and N columns.
Bias
We can see that the MLE is (slightly) biased.

E µ̂ = µ

E σ̂2 =
N − 1

N σ2 (prove)
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Estimating GARCH

Let us continue to focus on GARCH(1,1). The principal
technique for estimating the parameters of a GARCH process
is maximum likelihood, but with several caveats:
▶ We do not know the marginal densities of the residuals

and they are not identical
▶ We do not know know ε0 or σ0 (assume t = 1 is the

first observed innovation)
▶ While we may assume that they are i.i.d., we may not

know the exact density of the standardized residual fZ(·)
We address these through the quasi-MLE, in which we note
that the multivariate density is the product of the conditional
densities, and we assume that the residuals are normal:

log fε1,ε2,...,εn|σ1 (ε1, ε2, . . . , εn) = −1
2

n∑
t=1

log
(
2πσ2

t
)
+

ε2
t

σ2
t
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Estimating GARCH

Variance Targeting
Assuming that the unconditional variance of the innovations
exists, it is advisable to set the intercept based on the
sample variance.

α0 = σ̂2 (1 − α1 − β1)

Then you are only using the QMLE to estimate α1 and β1.
N.B.: You should probably put a lower bound on α1 in this
case, otherwise the β1 could be degenerate.

Initialization
Assuming t = 1 is your first innovation, we need a way of
determining σ2

1 in terms of the parameters. That means you
need to choose values for ε2

0 and σ2
0. One choice is to take

both to be σ2. In combination with variance targeting, this
means σ2

1 = σ̂2.
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Forecasting GARCH
In terms of forecasting, we already have σ2

n+1. Say we are
interested in En

[
σ2

n+2
]

(the subscript on the expectation
represents the sigma algebra), we can write

σ2
n+2 = σ2 (1 − α1 − β1) + σ2

n+1
(
α1Z2

n+1 + β1
)

so because Zn+1 ∼ SWN(0, 1)

En
[
σ2

n+2
]
= σ2

n+1 (α1 + β1) + σ2 (1 − α1 − β1)

Iterating this, we get the general result for integer m > 0,

En
[
σ2

n+m
]
= σ2

n+1 (α1 + β1)
m−1 + σ2

(
1 − (α1 + β1)

m−1
)

▶ The forecasts are a convex combination of the current
conditional variance σ2

n+1 and the unconditional, or
long-run, variance σ2.
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