
Quantitative Risk Management
Case for Week 3

John A. Dodson

September 27, 2021

Numerical Approach to Maximum Likelihood Estimation

Gradient descent (Newton) methods for minimizing a real-valued function are based on the observation that
if a function (in a single variable here) u 7→ h(u) is sufficiently regular near its minimum u⋆, then h′(u⋆) = 0
and

h′(u) ≈ h′(u⋆) + h′′(u⋆)(u− u⋆)

for u near u⋆, so

u⋆ ≈ u− h′(u)

h′′(u)

If h′′(uj) > 0 for each j, then an iterative scheme

uj+1 = uj − γj
h′(uj)

h′′(uj)
for j = 1, 2, . . .

for 0 < γj ≤ 1, will converge to u⋆, as long as u0 is close enough to u⋆, and γj not too large.

Multivariate optimization

If u is an element of a vector space, the scheme generalizes to

uj+1 = uj − γj

[
∂2h

∂u′∂u

∣∣∣∣
uj

]−1
∂h

∂u′

∣∣∣∣
uj

(1)

where the gradient is a column vector and the Hessian is a positive definite matrix.

Approximate Fisher information

In a generic unconstrained optimization setting, Newton methods can be burdensome because they require
implementations for all of the first and second partial derivatives of the objective function.

The authors of the BHHH method in [2] noted that, in the case of numerical maximum likelihood esti-
mation, this burden is reduced substantially because the Fisher information of a random variable X can be
expressed as either the expected value of the Hessian or the covariance of the gradient of the log-likelihood
with respect to the parameters.

∂2

∂θ′ ∂θ
E [− log f(X; θ)] = cov

[
∂ log f(X; θ)

∂θ′

]
1

So, if our problem is to identify the entropy-minimizing parameters

θ̂ = argmin
θ

H(X; θ)

where the entropy

H(X; θ) = E [− log f(X)] ≈ 1

n

n∑
i=1

− log f(xi; θ)

for an i.i.d. sample {xi}i=1,2,...,n, we effectively have the objective function

h(u) =
1

n

n∑
i=1

− log f(xi;u) (2)

We still need to be able to evaluate the first partials for each uj by hand; but in terms of these the Hessian
can be approximated by

∂2h

∂u′∂u

∣∣∣∣
uj

≈ 1

n

n∑
i=1

∂ (− log f(xi;u))
∂u′

∣∣∣∣
uj

∂ (− log f(xi;u))
∂u

∣∣∣∣
uj

(3)

which is guaranteed to be a positive definite matrix as long as all of the parameters are distinct.

Line search

We need to ensure in each step that γj is not too big. The method employed in BHHH seems to be based on
the prior work in [1].

The goal with this is to make sure that the magnitude of the gradient of h(·) at each step is always
decreasing. Choose a constant 0 < δ < 1

2 . Start an inner iteration at k = 0 with the tentative assumption
that γ(0)j = 1:

u
(k)
j+1 = uj − γ

(k)
j

[
∂2h

∂u′∂u

∣∣∣∣
uj

]−1
∂h

∂u′

∣∣∣∣
uj

If u(k)j+1 is valid and

h
(
u
(k)
j+1

)
− h (uj) < δ

(
u
(k)
j+1 − uj

)′ ∂h

∂u′

∣∣∣∣
uj

(4)

proceed with uj+1 = u
(k)
j+1. If not, progressively try

γ
(k+1)
j = 2−(k+1)

for k = 1, 2, . . . until condition (4) is met.
Note that the line search sub-routine presents an opportunity to validate that the new candidate for the pa-

rameters satisfies any required constraints, such as conditions for positivity and stationarity of the conditional
variance.

2

Implementation for GARCH quasi-MLE

Let’s consider specifically the conditional quasi-MLE for GARCH(1,1),

σ2
i = α0 + α1ε

2
i−1 + β1σ

2
i−1

for a timeseries of invariants (Xi)i where εi = Xi − E[Xi|Fi−1] and σ2
i = var[Xi|Fi−1].

The (quasi1, conditional) negative log-likelihood for a sample (xi)i=1,...,n is

h(u) =
1

n

n∑
i=1

1

2

(
log

(
2πσ2

i

)
+

ε2i
σ2
i

)
for parameters u = (α0, α1, β1), residuals εi = xi−µi, and unconditional variance σ2

1 = α0/(1−β1−α1).
We can assume that µi ≡ 0 for daily returns.

BHHH is a quasi2-Newton method requiring an explicit gradient along with the objective function, from
which the Hessian can be approximated from the Fisher information.

The partials are all of the form

∂h

∂uj
=

1

n

n∑
i=1

1

2σ2
i

(
1− ε2i

σ2
i

)
∂σ2

i

∂uj

and the partials of the conditional variance are themselves linear recursions.

∂σ2
1

∂α0
=

1

1− β1 − α1
,

∂σ2
i

∂α0
= 1 + β1

∂σ2
i−1

∂α0
i = 2, . . . , n

∂σ2
1

∂α1
=

1

(1− β1 − α1)
2 ,

∂σ2
i

∂α1
= ε2i−1 + β1

∂σ2
i−1

∂α1
i = 2, . . . , n

∂σ2
1

∂β1
=

1

(1− β1 − α1)
2 ,

∂σ2
i

∂β1
= σ2

i−1 + β1
∂σ2

i−1

∂β1
i = 2, . . . , n

References

[1] Larry Armijo. Minimization of functions having Lipschitz continuous first partial derivatives. Pacific
Journal of Mathematics, 16(1):1–3, January 1966.

[2] Ernst K. Berndt, Bronwyn H. Hall, Robert E. Hall, and Jerry A. Hausman. Estimation and inference
in nonlinear structural models. Annals of Economic and Social Measurement, 3(4):653–665, October
1974.

1in the sense of maximum entropy residuals
2in the sense of approximate Hessian

3

Julia implementation

module Fall3case

using Statistics, LinearAlgebra

"GARCH(1,1) at (α₀, α₁, β₁)"
function garch(ε,θ)

(α₀,α₁,β₁) = θ
σ² = fill(NaN,length(ε))
if α₀>0 && α₁≥0 && β₁≥0 && α₁+β₁<1

σ²[1] = α₀/(1-β₁-α₁)
for i = 2:length(σ²)

σ²[i] = α₀+α₁*ε[i-1]^2+β₁*σ²[i-1]
end

end
return σ²

end

"GARCH(1,1) partials wrt (α₀, α₁, β₁)"
function garch_grad(ε,θ)

(α₀,α₁,β₁) = θ
σ² = garch(ε,θ)
grad = fill([NaN;NaN;NaN],length(σ²))

if α₀>0 && α₁≥0 && β₁≥0 && α₁+β₁<1
grad[1] = [

1/(1-β₁-α₁);
α₀/(1-β₁-α₁)^2;
α₀/(1-β₁-α₁)^2]

for i = 2:length(grad)
grad[i] = [

1+β₁*grad[i-1][1];
ε[i-1]^2+β₁*grad[i-1][2];
σ²[i-1]+β₁*grad[i-1][3]]

end
end
return grad

end

"negative quasi log-likelihood for GARCH"
function qmle_obj(ε,θ)

σ² = garch(ε,θ)
return (log.(2π*σ²)+ε.^2 ./σ²)/2

end

"negative quasi log-likelihood for GARCH (α₀,α₁,β₁) partials"

4

function qmle_grad(ε,θ)
σ² = garch(ε,θ)
return (1 .-ε.^2 ./σ²)./(2*σ²).*garch_grad(ε,θ)

end

"Newton's method minimizer"
function newtMin(h_obj::Function,h_grad::Function,h_hess::Function,u₀::Vector

;maxiter=500,tol=1.e-14,δ=1.e-4)
u₁ = u₀
h₁ = h_obj(u₁)
if isnan(h₁)

throw(DomainError(u₀,"invalid initial value"))
end
N = maxiter
while N>0

u₀ = u₁
h₀ = h₁
k = 0
while N>0 && (k==0 || isnan(h₁)

|| h₁-h₀>δ*dot(u₁-u₀,h_grad(u₀)))
u₁ = u₀-2.0^k*h_hess(u₀)\h_grad(u₀)
h₁ = h_obj(u₁)
k -= 1
N -= 1

end
if abs(h₁-h₀)<tol

return u₁
end

end
return u₀

end

"BHHH solver for maximum likelihood estimates"
function bhhh(x::Vector,obj::Function,grad::Function,θ₀::Vector)

h_obj = θ->mean(obj(x,θ))
h_grad = θ->mean(grad(x,θ))
h_hess = θ->cov(grad(x,θ))
return newtMin(h_obj,h_grad,h_hess,θ₀)

end

"GARCH(1,1) fit"
function garch_fit(ε)

θ₀ = [var(ε)*(1.0-0.4-0.4),0.4,0.4]
return bhhh(ε,qmle_obj,qmle_grad,θ₀)

end

5

export garch,garch_fit

end # module

6

