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Review: Univariate Scalar Random Variables

Student’s-t is a symmetric r.v. which exhibits leptokurtosis.

(Gosset’s) Student’s-t

Consider a normal r.v. with an unknown variance close to
one. If the variance is a draw from an reciprocal Gamma,

X
∣∣σ−2 ∼ N

(
0, σ2

)
σ−2 ∼ χ2(ν) ∼ Gamma

(ν
2
,
ν

2

)
the resulting unconditioned density is

fX (x) =
Γ
(
ν+1
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)
Γ
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ν
2

)
Γ
(

1
2

) 1√
ν

(
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x2

ν

)− ν+1
2

I The version with ν = 1 is the Cauchy

I The limit ν →∞ is a normal
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Review: Univariate Scalar Random Variables

The version of the Student’s-t above has a variance for
ν > 2, but it is not unity.

Standardized Student’s-t
The standardized version can be useful for fitting residuals*.
It has the density

fX (x) =
Γ
(
ν+1

2

)
Γ
(
ν
2

)
Γ
(

1
2

) 1√
ν − 2

(
1 +

x2

ν − 2

)− ν+1
2

I *Note that E eX →∞ for any finite ν so Student’s-t
cannot be used with log-returns of asset prices.

I For historical reasons, if the parameter ν is an integer,
it is termed the degrees of freedom.
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Review: Univariate Scalar Random Variables

The most important parametric random variable with R+

support is the Generalized Inverse Gaussian

Generalized Inverse Gaussian (GIG)

f (x) =
χ−λ

(√
χψ
)λ

2Kλ
(√
χψ
) xλ−1e−

χ
2x
−ψx

2

for x > 0, where Kλ(·) is modified Bessel function of the
second kind.

I This generalizes the Gamma and reciprocal Gamma

I There are several versions of parameterization in use

I Other members of this family include the inverse
Gaussian and the reciprocal inverse Gaussian

I This can be generalized to positive-definite matrices
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Review: Univariate Scalar Random Variables

The generalized hyperbolic family is a Normal mean / GIG
variance mixture. The Student’s-t is a special case (with
λ = −ν/2).

Normal / reciprocal inverse Gaussian (NRIG)

Another useful GH is the symmetric Normal / reciprocal
inverse Gaussian mixture (with λ = 1

2 ). The standardized
version has the density

fX (x) =
1

π
eg
√

1 + g K0

(√
g2 + (1 + g)x2

)
for shape parameter g ≥ 0. It is not obvious, but the limit
g →∞ corresponds to the normal.

I As a model for the residuals of the log-returns of asset
prices, this is superior to the Student’s-t example from
the text because E eX is finite.
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Spherical Random Variables

It is helpful to build up a theory of multivariate random
variables from geometric principles. By definition, a spherical
random variable is distributionally invariant to rotations,

UX d
= X

where U is a square matrix representation of a rotation,
which means that U ′U = I .
Spherical random variables have two equivalent defining
properties,

a′X d
= ‖a‖X1

E e it
′X = ψ

(
t ′t
)

for vectors a and t. We term ψ(·) the characteristic
generator of X . We therefore write X ∼ Sd(ψ) to denote a
spherical random variable in d dimensions with characteristic
generator ψ(·).
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Elliptical Random Variables

An affine transformation of a spherical random variable is
termed an elliptical random variable.

X
d
= µ+ AY

where Y ∼ Sk(ψ) and A is a d × k matrix.
The distributional invariance of Y to rotations means that A
is generally redundant. All we need to characterize X is µ,
ψ(·), and Σ = AA′. But note that

Ed (µ,Σ, ψ(·))
d
= Ed (µ, cΣ, ψ(·/c))

for c > 0, so Σ may not necessarily be the covariance of X .

I Note that Σ need not be full rank. In this case, the
rank of Σ is at most d ∧ k .
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Elliptical Random Variables

Some Properties

Say X ∼ Ed (µ,Σ, ψ).

I linear combinations If B k × d and b k × 1 constants,
then

BX + b ∼ Ek

(
Bµ+ b,BΣB ′, ψ

)
I if Σ is full rank, then the non-negative scalar r.v.

R =
√

(X − µ)′Σ−1(X − µ)

is independent of S = Σ−1/2(X − µ)/R and S is
uniformly distributed on a unit sphere.

I convolutions If Y ∼ Ed(µ̃,Σ, ψ̃) independent of X ,
then

X + Y ∼ Ed

(
µ+ µ̃,Σ, ψ · ψ̃

)
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Elliptical Random Variables
Maximum Likelihood Estimator

if the density of an r.v. X ∈ RM can be written in the form

fX |µ,Σ(x) = g
(
Ma2(x , µ,Σ)

)√
|Σ−1|

for some function g(·) where

Ma(x , µ,Σ) =

√
(x − µ)′Σ−1 (x − µ)

is the Mahalanobis distance, then the MLE based on a
sample {x1, . . . , xN} solves the system

µ̂ =
N∑
i=1

wi∑
j wj

xi Σ̂ =
N∑
i=1

wi

N
(xi − µ̂) (xi − µ̂)′

with wi =
−2g ′

(
Ma2

(
xi , µ̂, Σ̂

))
g
(

Ma2
(
xi , µ̂, Σ̂

)) ∀i = 1, . . . ,N
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Linear Factor Models

If X is a d-dim random variable, and we can write

X = a + BF + ε

where F is a p-dim random vector with p < d and
cov F > 0, B is a d × p matrix, the entries of ε are zero
mean and uncorrelated, and cov (F , ε) = 0, we call F the
common factors and B the factor loadings.
We would consider this a model or approximation if d � p.
Sometimes we have an idea about what the factors or
loadings might be; they might even be observable.

I In macroeconomic factor models, we observe the
factors.

I In fundamental factor models, we observe the loadings.

I In statistical or latent factor models, we observe neither
the factors nor the loadings.
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Linear Factor Models

Capital Asset Pricing Model

CAPM for investments is an example of a macroeconomic
factor model. It is typically applied to traded equity
securities and a risk-free deposit as canonical “capital
assets”. We will take X to be the (simple) return on each
risky capital asset over some investment period.

If X is normal and investors allocate to maximize expected
exponential utility, then we can express the equilibrium
solution as a single-factor model where F is the return on a
broad index of risky capital assets.
The factor loadings Bi can be determined by regression, and
are termed the asset “betas”.
The intercept components turn out to be ai = rτ (1− Bi )
where r is the return rate on the risk-free asset.
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Linear Factor Models

Fundamental Model
Sometimes it is useful to impose a classification scheme on
the components of X , for example an industry classification
scheme or a geographic or demographic scheme. In this
case, we generally know the non-zero loadings in B, but we
do not observe the factors F .

In this case, we can estimate timeseries for F in terms of
timeseries for X according to ordinary least squares
regression

F̂OLS
t =

(
B ′B

)−1
B ′Xt

if the variance of the residuals is the same (homoscedastic)
or generalized least squares regression

F̂GLS
t =

(
B ′Υ−1B

)−1
B ′Υ−1Xt

if not.
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Principal Components

Principal components analysis is inspired by the concept of a
statistical factor model, but since it is entirely endogenous it
is really a separate concept.
A covariance or correlation matrix Σ has the property of
being positive semi-definite, which means that x ′Σx ≥ 0 for
all compatible vectors x . Therefore, by the spectral
decomposition theorem, we can write

Σ = ΓΛΓ′

where Λ is a diagonal matrix with non-negative entries (the
eigenvalues) and Γ is a square matrix whose columns (the
eigenvectors) are orthonormal, which means ΓΓ′ = I .
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Principal Component Analysis

If Σ has full rank d , all of the eigenvalues will be positive.
The potential for dimension reduction comes from
partitioning the model into the largest k < d eignevalues
and eigenvectors, and relegating the remaining d − k to the
residual.

Principal Components as Factors

Let d × 1 Y = Γ′(X − µ) where µ is the mean of X .
Partition Y and Γ into k × 1 Y1 and (d − k)× 1 Y2 and
d × k Γ1 and d × (d − k) Γ2 and let ε = Γ2Y2, then

X = µ+ Γ1Y1 + ε

and ε almost satisfies the assumptions for a linear factor
model.
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Robustness

Non-Parametric Estimators
The term robustness in statistics can sometimes refer to
non-parametric techniques that do not require assumptions
about the characterization of the random variables involved.

I Such techniques usually lean on the Law of Large
Numbers, and hence require very large samples to be
effective.

Robust Estimators
A more precise meaning has evolved that focuses on
estimators that may be based on parametric
characterizations, but which can produce reasonable results
for data that does not come from that class of
characterizations or stress-test distributions.

I We can make this desire concrete in term of the the
influence function associated with an estimator.
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Robust Estimators

Influence Function
We have discussed estimators as functions of samples. If
instead we consider the estimator as a functional of the
density from which observations are drawn, we can consider
its (functional) derivative with respect to an infinitesimal
perturbation in the density given by

fX (x)→ (1− ε)fX (x) + εδ(x − y)

Thus, with θ̃ the functional induced by the estimator θ̂,

IF
[
y , fX , θ̂

]
= lim

ε→0

θ̃ [(1− ε)fX (x) + εδ(x − y)]− θ̃ [fX ]

ε

If this derivative is bounded for all possible displacements, y ,
we say the estimator is robust.
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Robust Estimators

Robustness of the MLE
For the maximum likelihood estimator, the influence function
turns out to be proportional to

IF
[
y , fX , θ̂

]
∝
∂ log fX |θ(y)

∂θ

∣∣∣∣
θ=θ̂

For some characterizations, the parameter MLE’s are robust.
For some they are not.

I for X ∼ N (µ,Σ), µ̂ and Σ̂ are not robust

I for X ∼ Cauchy(µ,Σ), they are

Even for the empirical characterization, the influence
functions for the sample mean and the sample covariance are
not bounded; therefore these sample estimators are never
robust.
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Robust Estimators

Recall the general elliptic location and dispersion MLE’s,

µ̂ =
N∑
i=1

wi∑
j wj

xi

Σ̂ =
N∑
i=1

wi

N
(xi − µ̂) (xi − µ̂)′ with

wi , h
(

Ma2
(
xi , µ̂, Σ̂

))
∀i = 1, . . . ,N

where the function h(·) is the value of a particular functional
on the density.

M-Estimators
The idea with M-estimators is to choose h(·) exogenously in
order to bound the influence function by design.
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Robust Estimators
M-Estimators

We know that h(·) = 1 corresponds to the MLE for normals
and also to the sample estimators, which do not have
bounded influence functions. A weighting function that goes
to zero for large arguments is more likely to be robust. Some
examples include

I Trimmed estimators, for which

h(z) =

{
1 z < z0 = F−1

χ2
dim X

(p)

0 otherwise

I Cauchy estimators for which h(z) = 1+dimX
1+z

I Schemes such as Huber’s or Hampel’s for which

h(z) =

1 z < z0 =
(√

2 +
√

dimX
)2

√
z0
z e
− (
√
z−√z0)2

2b2 otherwise

These estimators can be evaluated numerically by iterating
to the fixed point.
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