
Scheduling the Construction and Interrogation of

Scope Graphs Using Attribute Grammars

Luke Bessant

bessa028@umn.edu
University of Minnesota, Twin Cities

Minneapolis, MN, USA

Eric Van Wyk

evw@umn.edu
University of Minnesota, Twin Cities

Minneapolis, MN, USA

Abstract

Recognizing that name binding is often done in an ad-hoc

manner, Visser and his colleagues introduced scope graphs

as a uniform representation of a program’s static binding

structure along with a generic means for interrogating that

representation to resolve name references to their declara-

tions. A challenge arises in scheduling the construction and

querying actions so that a name resolution is not performed

before all requisite information for that resolution is added to

the scope graph. Visser et al. introduced a notion of weakly

critical edges to constrain the order in which name resolu-

tion queries are performed to a correct one, but this has been

found to be somewhat restrictive.

Visser et al. also introduced Statix, a constraint solving

language for scope graph-based name resolution. We show

that specifications written in an annotated version of Statix

can be translated into reference attribute grammars, and that

the order in which equations are solved under demand driven

evaluation provides a valid order for solving constraints in

Statix. This formalizes what has been folklore in the attribute

grammar community for some time, that scope graphs are

naturally specified in reference attributes grammars.

CCS Concepts: • Software and its engineering → Trans-

lator writing systems and compiler generators.

Keywords: name binding, scope graphs, attribute grammars

ACM Reference Format:

Luke Bessant and Eric Van Wyk. 2025. Scheduling the Construction

and Interrogation of Scope Graphs Using Attribute Grammars. In

Proceedings of the 18th ACM SIGPLAN International Conference on
Software Language Engineering (SLE ’25), June 12–13, 2025, Koblenz,
Germany. ACM, New York, NY, USA, 14 pages. https://doi.org/10.
1145/3732771.3742711

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

SLE ’25, Koblenz, Germany
© 2025 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 979-8-4007-1884-7/2025/06

https://doi.org/10.1145/3732771.3742711

1 module A1 {
2 def y1 =
3 let v1 = 2
4 in 1 + v2
5 }
6

7 module B1 {
8 import A2
9 def x2 = y2
10 }

𝑆1

𝑆3

LEX

𝑆2 ↦ A1

MODLEX

𝑆4 ↦ B1

MOD

LEX

𝑆8

LEX
IMP

𝑆11

LEX

𝑆5

LEX

𝑆9 ↦ y1:INT

VAR 𝐿6
LEX

𝑆10 ↦ v1:INT

VAR
𝑆7 ↦ x2:INT

VAR

Figure 1. An LM program and its complete scope graph.

1 Introduction

The problem of name analysis, binding references to their

declarations in a program, is often treated in language-specific

ad-hoc manner. Visser and his colleagues [14] recognized

this and, over a series of papers [1, 14, 15, 17, 20] devel-

oped scope graphs as a uniform representation of the static

name-binding structure of a program and a constraint solv-

ing language Statix for specifying the solution to name

analysis problems. In this approach scopes and declarations

are represented graphically as nodes in a graph with labeled

directed edges defining relationships such as lexical parent-

hood between scopes and name declarations within a scope.

Name resolution is realized as a walk over the graph from

the reference’s scope node to possible declaration nodes.

These resolution paths must satisfy a data well-formedness

predicate associated with the lookup that identifies possi-

ble declarations. The set of allowed resolution paths is also

constrained to those whose label form a word in a path well-

formedness regular expression over edge labels.

Consider the example program in Figure 1 written in a

version of LM, a family of languages defined by Neron et al.

[14] for studying scope graphs and Statix. An issue arises

with importing modules to make the names they define vis-

ible in a scope: resolving those imported names depends

on first resolving the import. For example, while the LEX

(lexical parent), VAR (local variable declaration) and MOD (lo-

cal module declaration) edges are derived from the syntactic

structure of the program, the IMP edge in Figure 1 arises from

the import of module A by module B. For Figure 1, when the

path well-formedness regular expression is LEX* IMP? VAR,

the lookup of y
2
depends on first resolving A2 and extending

the scope graph with the resulting IMP edge. We then have

https://orcid.org/0009-0007-6303-4354
https://orcid.org/0000-0002-5611-8687
https://doi.org/10.1145/3732771.3742711
https://doi.org/10.1145/3732771.3742711
https://doi.org/10.1145/3732771.3742711

SLE ’25, June 12–13, 2025, Koblenz, Germany Bessant and Van Wyk

resolution path 𝑆8
IMP
Ð→ 𝑆2

VAR
Ð→ 𝑆9 finding y

1
. If we resolve y

2

without this edge, the result is unstable, something that must

be avoided as later additions to the scope graph change the

result of the query. Thus a key issue is determining when it

is safe to execute a query so that it is stable.
Rouvoet et al. introduced the notion of weakly critical

edges with respect to a query [15]. These are edges that are

asserted but unbuilt, which may become part of a resolu-

tion path for a query. Their presence indicates that a query

must not yet be executed as the result may be unstable. Van

Antwerpen et al. [17] introduced Statix, a constraint solving

name resolution language for scope graphs. Statix speci-

fications define syntax-directed predicates and constraints

that define what constitutes a correct program with respect

to name binding and typing. During program analysis, con-

straints are non-deterministically chosen from a working set

to be solved, but may be put back if that the constraint is

not yet solvable. Statix recognizes weakly critical edges to
decide whether the current state of the scope graph is ready

for a given query to be solved. If there are weakly critical

edges for it, a query constraint is put back into the working

set. This can lead to a Statix program analysis becoming

unresolvably stuck. A query cannot be started until a par-

ticular edge is built, but the edge cannot be built until that

query is complete: a circular dependency issue. The weakly

critical edges approach has shown to be too restrictive to

support more complicated name binding systems, such as

the unordered self-influencing use declarations in Rust.

Attribute grammars [12] (AGs) are also constraint-solving

systems, but the constraints are directed equations that de-

fine an attribute on the left-hand side based on attribute

references on the right. Attributes decorate the nodes of a

syntax tree with values which are defined by these equations.

Attribute evaluation propagates information up and down

the syntax tree. Importantly the dependencies of attributes,

based on their defining equations, determine a schedule un-

der demand-driven evaluation. Reference [9] and remote [3]

AGs support attributes that are references to other nodes in

the syntax tree, thus allowing a graph structure to be super-

imposed onto the program’s tree. Here, we will show that

demand-driven [10] reference AGs [5, 9, 13] provide a nat-

ural way to schedule the construction and interrogation of

scope graphs, where dependencies between name resolution

operations and building edges in a scope graph allow us to

dynamically derive a sound schedule. During a name reso-

lution, we can identify the unbuilt edges which are weakly

critical for that resolution and demand that they are added

to the graph. This may involve building nodes or completing

other name resolutions before continuing with the original.

AGs thus provide a means to schedule the solution of Statix

constraints and also leads to a better understanding other

similarities and differences between these two approaches

to name resolution.

Contributions and roadmap: Section 2 provides back-

ground on scope graphs. Section 3.1 provides Statix back-

ground and Section 3.2 describes our annotations to and

restrictions to Visser et al.’s version that facilitates the trans-

lation to AGs. Section 4.1 provides some background on AGs

and Section 4.2 gives our operational semantics of demand-

driven evaluation. Section 5 describes how annotated Statix

specifications are translated to AGs. Section 6 shows how the

trace of AG evaluation operational semantics corresponds to

a trace of Statix constraint solving semantics and produce

the same results. Interestingly, Statix specifications that get

stuck on missing weakly critical edges corresponds to a cycle

in the attribute grammar. Section 7 discusses some aspects

of this process; Section 8 described related work. Section 9

describes some future work and concludes.

2 Background: Scope Graphs

Scope graphs graphically represent the scoping structure of

programs. They contain nodes that represent either program

scope regions or name declarations. One reason for this

uniformity is that constructs like module in Figure 1 both

define a name and indicate a program region; thus all nodes

are referred to as scopes. Information pertaining to an object

language declaration, such as its name, is associated with a

scope by a partial relation mapping scopes to object language

terms 𝒯 . Scope graph edges define relationships between

scopes with a label in ℒ, defined by the object language. For

instance, the LEX label in Figure 1, indicating that the target

lexically encloses the source, a common relationship.

Definition 2.1. A scope graph is a triple 𝐺 = ∐︀𝑆𝐺 , 𝐸𝐺 , 𝜌𝐺̃︀

with a set of nodes 𝑆𝐺 , edges (𝑠1, 𝑙, 𝑠2) ∈ 𝐸𝐺 with 𝑠1, 𝑠2 ∈ 𝑆𝐺
and 𝑙 ∈ ℒ, and 𝜌𝐺 ∶ 𝑆𝐺 ⇀ 𝒯 mapping nodes to data terms.

𝑆𝐺 is a set of scope identifiers which are unique and are

represented as a name with an identifying numeric subscript.

Resolution in a scope graph is performed by queries. These
are traversals which, from a start scope, find all reachable
scopes with respect to a regular expression over ℒ. Any

scope at the end of a path from the query start scope whose

labels form a word in the language of the regular expression

is reachable [15]. Each query has a data predicate restricting

the set of valid resolutions, here, to match reference names to

declarations. A query for reference y
2
in Figure 1 with regular

expression LEX* IMP? VAR yields the path 𝑆8
IMP
Ð→ 𝑆2

VAR
Ð→ 𝑆9,

finding the node for declaration y
1
.

Definition 2.2. A query over graph 𝐺 with label set ℒ is

a function 𝑆𝐺 × 𝑅ℒ × (𝒯 → bool) → 𝑅, yielding a set of

resolution paths 𝑅, such that 𝑟 ∈ 𝑞𝑢𝑒𝑟𝑦(𝑠, 𝑟𝑥,𝑑) whenever

𝐺 ⊢ 𝑟 ∶ 𝑠
𝑤
Ð→ 𝑠′,𝑤 ∈ 𝐿(𝑟𝑥), and 𝑑(𝜌𝐺(𝑠

′
)).

Edges are added to a scope graph during analysis, e.g.
an import may lead to a new IMP edge from the importing

to imported scope. Rouvoet et al. [15] recognized that the

Scheduling the Construction and Interrogation of Scope Graphs Using Attribute Grammars SLE ’25, June 12–13, 2025, Koblenz, Germany

resolution of a query, which can only use the edges in the

graph at the time of its execution, must be stable. That is, no
new additions to the scope graph will affect the result of the

query. If every query result is stable, then name analysis is

sound. Ensuring stability is a key aspect of this and previous

work [15].

3 Statix: Annotated, Restricted

Statix is a language for specifying constraints defining the

name and type analysis of a language. In this work, we define

a restricted variant of Statix-core presented by Rouvoet et

al. [15] and refer to it simply as Statix. These modifications

are minor and used to facilitate the translation of Statix to

attribute grammars discussed in Section 5.

3.1 Statix background: syntax and semantics

Statix specifications consist of predicates with constraint

bodies. Constraints operate over terms, sets, and variables

in the specification. As constraints are solved, fresh vari-

ables can be introduced into constraints that are later re-

placed by ground terms by solving other constraints. During

evaluation, the scope graph 𝐺 is constructed and (unsolved)

constraints are held in a working set 𝐶 that grows as user-

defined predicates are expanded, and shrinks as constraints

are solved. The state of evaluation is denoted ∐︀𝐺 ⋃︀𝐶̃︀. The set

𝐶 is treated as the conjunction of its elements, so a program

is only satisfiable (type correct) if every constraint that is

introduced during the program’s analysis is solved. Thus

the final state for a correct program is its complete scope

graph and the empty set of constraints, ∐︀𝐺 ⋃︀∅̃︀. Failure re-

sults in a single constraint in state ∐︀𝐺 ⋃︀{false}̃︀. Rouovet et

al. [15] provide an operational semantics of Statix using

stepping rules of the form ∐︀𝐺 ⋃︀𝐶̃︀ → ∐︀𝐺 ⋃︀𝐶̃︀. The initial state

is the empty scope graph and a top-level constraint over

the program term. Some constraints in 𝐶 can be solved and

may be chosen; some may not be, and depend on other con-

straints being solved first. Most constraints require ground

arguments, e.g. an edge from 𝑠1 to 𝑠2 cannot be added until

those scopes are identified.When there are active constraints

and none can be solved, the system is said to be stuck.
Figure 2 provides the syntax of Statix predicates and

constraints. Our annotations, discussed in Section 3.2, are

italicized and colored and can be disregarded until then. Solv-

ing a true constraint simply removes that constraint from

𝐶 , while solving false steps Statix to a failure state where

there is no more work left to do, as we have determined

the program is unsatisfiable. Similarly, a true equality or in-

equality constraints are removed from the set when solved;

otherwise, a false constraint is added. This differs from the

definition of equality provided by Rouvoet et al. [15], that

instead steps to a failure state. This difference allows a closer

correspondence between Statix and our translation of it,

and is discussed in Section 6. Solving a conjunction simply

Signatures

𝑙 ∈ ℒ edge labels

𝑓 ∈ ℱ compound term names

𝑝 ∈ 𝒫 predicate id/nonterminal

𝑟𝑥 ∈ ℛ regular expressions

Variables

𝑥 ∈ 𝒳 term variables

𝑠 ∈ 𝒮 scope identifiers

Annotations (𝛼 , 𝛾) and Types (𝜏)

𝛼 ∶∶= @𝑠𝑦𝑛𝑡𝑎𝑥 | 𝜖 predicate annotations

𝛾 ∶∶= @𝑖𝑛ℎ | @𝑠𝑦𝑛 inherited/synthesized

| @𝑟𝑒𝑡 | 𝜖 returns/arguments

𝜏 ∶∶= 𝑝 nonterminal type

| 𝑠𝑐𝑜𝑝𝑒 | 𝑑𝑎𝑡𝑢𝑚 | 𝑝𝑎𝑡ℎ | ... built-in type names

| {𝜏} set type

Predicates

𝑃 ∶∶= 𝛼 𝑝((𝛾 𝑥 ∶ 𝜏)∗) :- 𝑐 . predicates

Constraints

𝑐 ∈ 𝐶 ::= true | false true/false

| 𝑡 == 𝑡 | 𝑡 != 𝑡 equality/inequality

| 𝑥 := 𝑡 definition

| 𝑐, 𝑐 conjunction

| {(𝑥 ∶ 𝜏)∗} 𝑐 exists quantification

| 𝑝(𝑡∗) predicate use

| new 𝑥 → 𝑡 scope assertion

| 𝑡 -[𝑙]-> 𝑡 edge assertion

| getData(𝑡, 𝑥) scope data assertion

| query(𝑡, 𝑟𝑥,𝑑, 𝑥) query

| min(𝑡, 𝑜𝑟𝑑, 𝑥) minimum

| single(𝑡, 𝑥) singleton

| inhabited(𝑡) non-empty

| 𝑡 match { (𝑡 ∶ 𝜏 → 𝑐)∗ } pattern matching

Terms, Variables, Identifiers, Sets

𝑡 ∈ 𝒯 ::= 𝑓 (𝑡∗) compound terms

| 𝑠 | 𝑙 scope/label identifiers

| 𝑥 term variables

| ∅ | {𝑡∗} sets

Scope Graph

𝐺 ::= ∐︀𝑆 ⊆ 𝒮, 𝐸 ⊆ (𝒮 × ℒ × 𝒮), 𝜌 ⊆ (𝒮 × 𝒯)̃︀

Figure 2. Statix syntax, along with our annotations.

adds both operands to the working constraint set. The defini-

tion constraint substitutes the ground term t for variable x in

the constraint set. The exists constraint replaces quantified

names with fresh variables in the component constraint, and

introduces that constraint to the working set. Predicates are

solved by expansion - the constraint within the predicate

definition is added to the set after argument substitution. The

new 𝑥 → 𝑡 constraint asserts a new scope with associated

data 𝑡 . We present the Statix step rule for this constraint

SLE ’25, June 12–13, 2025, Koblenz, Germany Bessant and Van Wyk

here, but leave most to Appendix A.

𝑠 ∉ 𝑆𝐺

∐︀∐︀𝑆, 𝐸, 𝜌̃︀⋃︀new 𝑥 → 𝑡 ;𝐶̃︀ → ∐︀∐︀𝑠 ;𝑆, 𝐸, (︀𝑠 ↦ 𝑡⌋︀𝜌̃︀⋃︀(︀𝑠⇑𝑥⌋︀𝐶̃︀
Op-Node

It introduces a fresh scope identifier 𝑠 that is inserted into 𝑆𝐺
and substituted for 𝑥 elsewhere in the constraint set, then

update 𝜌𝐺 with 𝑠 ↦ 𝑡 .

Solving an edge assertion 𝑠1 -[l]-> 𝑠2 updates the scope

graph so that (𝑠1, 𝑙, 𝑠2) ∈ 𝐸𝐺 , building a new edge. We assert

the data held in a scope with getData(𝑡, 𝑥), which, when 𝑡 is

a scope identifier 𝑠 , substitutes 𝜌𝐺(𝑠) for 𝑥 in the constraint

set. The query constraint implements queries over scope

graphs as described in Section 2, substituting the result of

the query for 𝑥 . The min constraint computes the minimum

of the set given as the first argument with respect to the

partial ordering given as its second. single(𝑡𝑠, 𝑥), when 𝑡𝑠

is a singleton set {𝑡}, steps to a state where 𝑡 is substituted for

𝑥 in the constraint set. Otherwise, when 𝑡𝑠 is not a singleton,

a false constraint is introduced to the set. inhabited(𝑡𝑠)

is satisfiable when 𝑡𝑠 is non-empty. The match constraint

operates in the standard way, with constraint 𝐶 associated

with a matching case being introduced to the constraint set.

We provide an example of a Statix specification in Fig-

ure 3 for LM, a simple language with expressions and mod-

ules. The initial constraint set in Statix for LM is {main(𝑝)}

where 𝑝 is the program term. This is expanded using the

definition of main, and constraint solving continues on the

resulting state. The import case of predicate dcl, and the ref

case of exp both implement name resolution using queries.

The former for resolving an import reference to a module

scope, and the latter performing LM variable resolution.

To address the issue of query stability and ensure sound-

ness of name resolution in Statix, previous work [15] intro-

duced the notion of weakly critical edges for a query. These
are edges asserted in the constraint set, but missing from

the scope graph, whose solving may result in a graph which

yields new paths for the query. The presence of any such

edges for a query determines that the query must not be

solved in the current state of the scope graph. Definition 3.1

gives an amended version of the Rouvoet et al.’s definition

of weakly critical edges [15].

Definition 3.1. An edge (𝑠1, 𝑙, 𝑠2) is weakly critical with
respect to a graph 𝐺 and 𝑞𝑢𝑒𝑟𝑦(𝑠, 𝑟,𝑑) when:

1. 𝐺 ⊢ 𝑝 ∶ 𝑠
𝑤
Ð→ 𝑠1 for some word𝑤 ,

2. Word𝑤𝑙 is a prefix of a word in 𝐿(𝑟),

3. (𝑠1, 𝑙, 𝑠2) ∉ 𝐸𝐺 .

As an example, consider a situation where during con-

straint solving in Statix we have a modified version of the

scope graph in Figure 1, but with the IMP edge missing, and

our constraint set is the following:

{ 𝑆8 -[IMP]-> 𝑆2,
query(𝑆8, LEX* IMP? VAR, var-is("y"), res), ... }

1 @𝑠𝑦𝑛𝑡𝑎𝑥 main(m∶𝑚𝑎𝑖𝑛) :- m match
2 { prog(ds∶ 𝑑𝑐𝑙𝑠) -> new sg -> noDatum(),
3 dcls(sg, sg, ds)
4 }.
5 @𝑠𝑦𝑛𝑡𝑎𝑥 dcls(@𝑖𝑛ℎ s∶ 𝑠𝑐𝑜𝑝𝑒, @𝑖𝑛ℎ sm∶ 𝑠𝑐𝑜𝑝𝑒, ds∶ 𝑑𝑐𝑙𝑠) :-
6 ds match { nil() -> true
7 | cons(d∶ 𝑑𝑐𝑙, rest∶ 𝑑𝑐𝑙𝑠) -> {sn∶ 𝑠𝑐𝑜𝑝𝑒}
8 new sn, sn -[LEX]-> s,
9 dcl(s, sn, sm,d), dcls(sn, sm, ds)
10 }.
11 @𝑠𝑦𝑛𝑡𝑎𝑥 dcl(@𝑖𝑛ℎ s∶ 𝑠𝑐𝑜𝑝𝑒, @𝑖𝑛ℎ sn∶ 𝑠𝑐𝑜𝑝𝑒,
12 @𝑖𝑛ℎ sm∶ 𝑠𝑐𝑜𝑝𝑒, d∶ 𝑑𝑐𝑙) :- d match
13 { mod(x∶ 𝑠𝑡𝑟𝑖𝑛𝑔, ds∶ 𝑑𝑐𝑙𝑠) -> {sm'∶ 𝑠𝑐𝑜𝑝𝑒}
14 new sm' -> datumMod(x),
15 sm -[MOD]-> sm', sm' -[LEX]-> s,
16 dcls(sm', sm', ds)
17 | def(x∶ 𝑠𝑡𝑟𝑖𝑛𝑔, e∶ 𝑒𝑥𝑝) -> {sv∶ 𝑠𝑐𝑜𝑝𝑒, t∶ 𝑡𝑦}
18 new sv -> datumVar(x, t), sm -[VAR]-> sv,
19 exp(s, e, t)
20 | import(x∶ 𝑠𝑡𝑟𝑖𝑛𝑔) ->

21 {rs∶ {𝑝𝑎𝑡ℎ}, rs'∶ {𝑝𝑎𝑡ℎ}, r∶ 𝑝𝑎𝑡ℎ, sm∶ 𝑠𝑐𝑜𝑝𝑒}
22 query (s, LEX* IMP? MOD, mod-is(x), rs),
23 min(rs, LEX > IMP > VAR = MOD, rs'),
24 single(rs', r),
25 tgt(r, sm), sn -[IMP]-> sm
26 }.
27 @𝑠𝑦𝑛𝑡𝑎𝑥 exp(@𝑖𝑛ℎ s∶ 𝑠𝑐𝑜𝑝𝑒, e∶ 𝑒𝑥𝑝, @𝑠𝑦𝑛 ty∶ 𝑡𝑦) :- e match
28 { add(l∶ 𝑒𝑥𝑝, r∶ 𝑒𝑥𝑝) -> {tyL∶ 𝑡𝑦, tyR∶ 𝑡𝑦}
29 exp(s, l, tyL), tyL == INT(),
30 exp(s, r, tyR), tyR == INT(),
31 ty := INT()
32 | ref(r∶ 𝑠𝑡𝑟𝑖𝑛𝑔) ->

33 {rs∶ {𝑝𝑎𝑡ℎ}, rs'∶ {𝑝𝑎𝑡ℎ}, r∶ 𝑝𝑎𝑡ℎ, s'∶ 𝑠𝑐𝑜𝑝𝑒, d∶ 𝑑𝑎𝑡𝑢𝑚}
34 query (s, LEX* IMP? VAR, var-is(r), vars),
35 min(rs, LEX > IMP > VAR = MOD, rs'),
36 single(rs', r),
37 tgt(r, s'), getData(s', d),
38 d match {datumVar(_, ty')∶ 𝑑𝑎𝑡𝑢𝑚 -> ty := ty'}
39 }.
40 tgt(r∶ 𝑝𝑎𝑡ℎ, @𝑟𝑒𝑡 s∶ 𝑠𝑐𝑜𝑝𝑒) :- r match
41 { end(s')∶ 𝑝𝑎𝑡ℎ -> s := s'
42 | edge(_, _, r')∶ 𝑝𝑎𝑡ℎ -> tgt(r', s) }.

Figure 3. A Statix specification for toy language LM

The IMP edge asserted is weakly critical for the query, which

can follow such an edge from 𝑆8 according to the query

regular expression. Thus the query must not be solved until

the edge asserted has been added to the scope graph, using

rule Op-Edge. Weakly critical edges can be identified by

syntactic analysis of the constraint set [15], whichmust occur

before the query is solved. This in itself entails a traversal

of the scope graph, at each scope looking for weakly critical

edges which are sourced from that node, and delaying the

query if any are found.

This behavior of delaying a query if there are any weakly

critical edges for it works, but due to the non-deterministic

nature of Statix, may result in the query being selected any

number of times before it is solvable. From a demand-driven

perspective, we would like for the query to merely pause

Scheduling the Construction and Interrogation of Scope Graphs Using Attribute Grammars SLE ’25, June 12–13, 2025, Koblenz, Germany

when a weakly critical edge is found, immediately build that

edge, and then continue the query. How we implement this

approach is a focus of successive sections of this work.

3.2 Annotations and restrictions

We specify a class of Statix specifications that can be trans-

lated to attribute grammars by imposing a few modest re-

strictions on how they are written, and add annotations to

Statix to simplify the translation discussed in Section 5. The

translation is also facilitated by the addition of type annota-

tions as shown in Figure 2 and Figure 3, since types, such as

nonterminal symbols, are needed in the AG specification. A

number of built-in types such as 𝑠𝑐𝑜𝑝𝑒 , 𝑝𝑎𝑡ℎ and 𝑑𝑎𝑡𝑢𝑚 are

thus provided.

The @𝑠𝑦𝑛𝑡𝑎𝑥 annotations in Figure 2 identify the syn-

tactic structure, the grammar, of the language defined. For

example, dcl on lines 11–12 and exp on line 27 in Figure 3.

We call such predicates syntax predicates and others such

as tgt function predicates. A structural restriction is that

syntax predicates must consist of a match constraint at the

top level, which breaks down the syntax term given as the

primary argument in order to derive the syntactic structure

from the match cases. We also require that each match case

contains a single existential constraint at the top level. This

determines the local names (attributes) of the corresponding

production as described in Section 5. The arguments to a

syntax predicate must be annotated with @𝑠𝑦𝑛 (synthesized)
or @𝑖𝑛ℎ (inherited) to identify the flow of information in

that predicate. These correspond to synthesized and inher-

ited attributes introduced in Section 4. Similarly, function

predicates must use @𝑟𝑒𝑡 to identify returns, with other

parameters treated as proper arguments.

A constraint-level restriction we make is that a new con-

straint must appear directly in the body of the existential

asserting its name. This restriction does not change what can

be expressed in Statix, only how the specification is written

- but is a restriction on the permission to extend analysis de-

fined by Rouvoet et al. [15] which allows the new constraint

for a scope to appear anywhere under the exists constraint

that introduces its name, with respect to predicate expansion.

Another restriction disallows unification in constraint ar-

guments. Previous versions of Statix [15, 17] would allow a

constraint such as exp(s, l, INT()) to replace the two con-

straints exp(s, l, tyL), tyL == INT() we use on line 29

of Figure 3. More complex examples can occur, but this re-

striction simplifies the the translation to a directed attribute

grammar. We also disallow unification of terms in the ==

operator. But this functionality can be expressed by a (some-

times much) more verbose use of match constraints. Instead,

we treat == as an equality check on ground terms, as indicated

by our modified semantics rule Op-Eq-True:

𝑡1 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡2 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡1 = 𝑡2

∐︀𝐺 ⋃︀𝑡1==𝑡2;𝐶̃︀ → ∐︀𝐺 ⋃︀𝐶̃︀
Op-Eq-True

These restrictions raise a question about the expressive-

ness of our formulation versus that of Statix as presented

in previous work [15, 17]. We have not performed a rig-

orous analysis to this effect, but have found that all name

analyses in example specifications in the MiniStatix artifact

provided by Rouvoet et al. [15], including those that make

use of unification, can be expressed in our formulation. These

all exhibit the more directed use of constraints that we re-

quire. As acknowledged above, this can lead to more verbose

specifications, something we consider in Section 9.

4 Attribute Grammars

This section provides background on attribute grammar spec-

ifications and our operational semantics of them. This is used

in Section 6 to show the correspondence between the evalu-

ation of Statix and demand-driven attribute grammars.

4.1 Background

Attribute grammars [12] (AGs), extended with higher order

(non-terminal) attributes [19] and reference [9] (also known

as remote [3]) attributes, provide semantics for languages

defined by a context free grammar 𝐺 and have the form

∐︀𝐺 = ∐︀𝑁𝑇,𝑇 , 𝑃, 𝑆 ∈ 𝑁𝑇 ̃︀,𝐴 = 𝐴𝑠 ∪𝐴𝑖 ∪𝐴𝑙 ∪𝐴𝑛𝑡𝑎,𝑂, 𝐸𝑄̃︀

AGs associate with each nonterminal 𝑁𝑇 in the grammar

a set of semantic attributes 𝐴 that occur on it, specified by

𝑂 ⊆ 𝑁𝑇 ×𝐴. Productions in 𝑃 have the form

prod 𝑝𝑛 ∶ 𝑛0 ∶ 𝑁𝑇0 ∶∶= 𝑥1 ∶ 𝑋1...𝑥 𝑗 ∶ 𝑋 𝑗 ⋃︀ 𝑛𝑡𝑎1 ∶ 𝑁𝑇1 ...𝑛𝑡𝑎𝑘 ∶ 𝑁𝑇𝑘

in which the left hand side nonterminal 𝑁𝑇0 and right hand

side terminals or nonterminals 𝑋𝑖 where 𝑋 = 𝑁𝑇 ∪ 𝑇 are

labeled with names used to reference those nodes in the equa-

tions defining the attributes. For example, Figure 4 contains

an attribute grammar fragment (generated from the Statix

specification in Figure 3) with an integer add production on

line 8.

Attributes in 𝐴 are either synthesized (𝐴𝑠) and propagate

information up the tree, inherited (𝐴𝑖) and propagate in-

formation down the tree, are local (𝐴𝑙), or are nonterminal
attributes [19] (𝐴𝑛𝑡𝑎). The latter appear after the vertical bar

in the production and are effectively additional children of 𝑛0
that are not known in the original tree but are computed and

“plugged into the tree” at attribute evaluation time. Lines 1–5,

9, and 15–16 declare attributes for type checking and scope

graph construction.

Attribute values can be primitive values such as strings

or Booleans but can also be program terms (higher order

attributes) or references to attribute-decorated tree nodes in

the current tree or another separate tree.

Each equation in 𝐸𝑄 is associated with a production in

𝑃 and computes values of attributes. These have the form

𝑛0.𝑎 = 𝑒 for synthesized or local attributes, 𝑥𝑖 .𝑎 = 𝑒 for in-

herited attributes, and 𝑛𝑡𝑎𝑖 = 𝑒 for nonterminal attributes.

The language of expressions 𝑒 is left unspecified here but

SLE ’25, June 12–13, 2025, Koblenz, Germany Bessant and Van Wyk

1 inh attr s:scope; inh attr sn:scope; inh attr sm:scope;
2 syn attr ok:bool; syn attr ty:type;
3 syn attr LEX_s::[scope]; syn attr VAR_s:[scope]; ... ;
4 syn attr LEX_sn:[scope]; syn attr VAR_sn:[scope]; ...;
5 syn attr LEX_sm:[scope]; syn attr VAR_sm:[scope]; ...;
6

7 nt exp with ok, s, ty, LEX_s, VAR_s, MOD_s, IMP_s;
8 prod add: top:exp ::= l:exp r:exp {
9 locals tyL:type, tyR:type;
10 l.s = top.s; r.s = top.s;
11 top.ok <- top.tyL == INT(); top.tyL = l.ty;
12 top.ok <- top.tyR == INT(); top.tyR = r.ty;
13 top.ty = INT(); }
14 prod ref: top:exp ::= x:string {
15 local ps:[path], ps':[path], p:path, s':scope, d:data;
16 local dwce:bool = dwce(top.s, LEX* IMP? VAR);
17 top.ps = query(dwce, top.s, LEX* IMP? VAR, var-is(x));
18 top.ps' = min(top.ps, LEX > IMP > VAR = MOD);
19 top.p = single(top.ps');
20 top.s' = tgt(p); top.d = s'.getData;
21 top.ty = case top.d of | datumVar(_, ty') -> ty'
22 | _ -> abort end; }
23 nt dcl with ok, s, sn, sm, LEX_s, LEX_sn, LEX_sm, ...;
24 prod mod: top:dcl ::= ds:dcls | sm':scope {
25 sm' = mkScope(datumMod(x));
26 sm'.LEX = top.s::ds.LEX_s; sm'.VAR = ds.VAR_s;
27 sm'.MOD = ds.MOD_s; sm'.IMP = ds.IMP_s;
28 top.MOD_sm <- [sm'];
29 ds.s = sm'; ds.sm = sm';
30 top.ok <- ds.ok; }

Figure 4. Attribute, nonterminal, and production definitions

corresponding to the syntax predicates in Figure 3.

includes operations over primitive types, access attributes

on visible tree nodes, constructing new terms, etc. The dis-

cussions that follow introduce various expression forms as

they are needed. Several equations are shown in Figure 4. Of

interest is the equation on line 25 that creates a tree (repre-

senting a scope as described in the following sections) and

plugs it into the existing tree so that it can be decorated, as

seen on the following 2 lines.

4.2 Operational semantics for attribute evaluation

In AGs, the scheduling problem is to find an order in which

to solve the equations for attributes in the tree of an input

program. To demonstrate the correspondence between con-

straint solving in Statix and computing attributes in AGs

we provide an operational semantics which determines the

schedule during attribute evaluation in a demand-drivenman-

ner [10]. Demand-driven evaluation is the approach used in

recent AG systems such as JastAdd [6] and Silver [18]. The

rules realizing this process begin by demanding the value of a

synthesized attribute on the root node of the tree. To compute

this, values of attributes referenced in the right hand side of

the defining equation are demanded, which may then depend

on other attributes. When the right hand side of the equation

defining a demanded attribute is a value, then that value is

stored in the tree and used in the expression that demanded

it. A stack of demanded equation instances that correspond
to and define attribute instances in the tree is maintained, as

well as a set of active but undemanded equation instances.

The evaluation state is the triple ∐︀𝑡 ⋃︀𝑠𝑡𝑘 ; 𝑠𝑒𝑡̃︀, consisting of

(partially decorated) trees 𝑡 , equation stack 𝑠𝑡𝑘 , and equation

set 𝑠𝑒𝑡 . AG evaluation is determined by the transitive closure

of the stepping relation ∐︀𝑡 ⋃︀𝑠𝑡𝑘 ; 𝑠𝑒𝑡̃︀ → ∐︀𝑡 ⋃︀𝑠𝑡𝑘 ; 𝑠𝑒𝑡̃︀.

Since we make use of higher-order attributes, 𝑡 is a forest

of trees containing the syntax tree, as well as others defined

by nonterminal attributes. Members of 𝑡 are nodes, each

with a unique identifying number, a set of attributes that

are demanded, undemanded, or complete with value 𝑣 , and

references to child and NTA nodes. Each node stores an in-

dication that it has been visited or not. We say that a node

is visited if at least one of its attributes has been demanded.

The stack 𝑠𝑡𝑘 consists of instantiated equations defining de-
manded but not yet computed attributes. For each node in

𝑡 , its instantiated equations are derived from the equations

in that node’s production, with unique node identifiers sub-

stituted for local node names. Node identifiers are written

with a name from an equation and a unique number, such as

l8 for an instance of the first child of the add production on

line 8 in Figure 4. An example of an instantiated equation

is l8.s = top13.s derived from the first equation of line 10.

When the node l8 is constructed by the ref production on

line 14 it refers to itself with the name top. Its instantiated

equations may use top8 and thus only the subscript is used

in determining node equality.

The initial evaluation state for program 𝑝 consists of its

tree, the instantiated equation defining some synthesized

attribute 𝑠 on the root node and the empty set of equations:

∐︀mkTree(𝑝, 0)⋃︀(︀𝑎𝑔0.𝑠 = 𝑟𝑜𝑜𝑡1.𝑠⌋︀;∅̃︀. The attributed tree is

constructed by mkTree from the term 𝑝 and initial node id 0;

the equation comes from the production for the syntax pred-

icate main with pattern prog on line 1 of Figure 3. The rules

defining the step relation ∐︀𝑡 ⋃︀𝑠𝑡𝑘 ; 𝑠𝑒𝑡̃︀ → ∐︀𝑡 ⋃︀𝑠𝑡𝑘 ; 𝑠𝑒𝑡̃︀ are given

in Figure 5 and are discussed below. We denote the transitive

closure of this relation by ∐︀𝑡 ⋃︀𝑠𝑡𝑘 ; 𝑠𝑒𝑡̃︀ →∗ ∐︀𝑡 ′⋃︀𝑠𝑡𝑘 ′; 𝑠𝑒𝑡 ′̃︀.

We discuss here a few of the attribute grammar evaluation

rules to establish some intuition for them. Notation used in

the rules but not formally defined includes 𝑣 𝑣𝑎𝑙 asserting

that expression 𝑣 is a value, and 𝑛 𝑢𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑖𝑛 ∐︀𝑡 ⋃︀𝑠𝑡𝑘 ; 𝑠𝑒𝑡̃︀ to

say that node 𝑛 is unvisited in the attribute grammar state

given.

We assign values to attributes instances in the treewith the

CompAttr rule once the expression in the defining equation

is a value. When such an equation is on the top of the stack

it is popped and 𝑡 is updated so that 𝑛.𝑎 holds the value 𝑒 ,

indicating that 𝑛.𝑎 is complete. Rule CompNTA defines how

we build the tree from a term for a nonterminal attribute.

mkTree will recursively build the tree from term 𝑒 , using

fresh node ids for any child nodes. Attribute slots in the tree

are given the undefined indicator of �. We abort evaluation

Scheduling the Construction and Interrogation of Scope Graphs Using Attribute Grammars SLE ’25, June 12–13, 2025, Koblenz, Germany

∐︀𝑡 ⋃︀𝑠𝑡𝑘 ; 𝑠𝑒𝑡̃︀ → ∐︀𝑡 ⋃︀𝑠𝑡𝑘 ; 𝑠𝑒𝑡̃︀

𝑒 𝑣𝑎𝑙 𝑛 ∈ 𝑡

∐︀𝑡 ⋃︀n.a = e ∶∶ stk′; 𝑠𝑒𝑡̃︀ → ∐︀n.a ∶= e⇑𝑡 ⋃︀𝑠𝑡𝑘 ′; 𝑠𝑒𝑡̃︀
CompAttr

𝑒 𝑣𝑎𝑙 𝑡 ′ =𝑚𝑘𝑇𝑟𝑒𝑒(𝑒,𝑛𝑡𝑎)

∐︀𝑡 ⋃︀nta = e ∶∶ stk′; 𝑠𝑒𝑡̃︀ → ∐︀𝑡 ∪ 𝑡 ′⋃︀𝑠𝑡𝑘 ′; 𝑠𝑒𝑡̃︀
CompNTA

∐︀𝑡 ⋃︀𝑥 = 𝑎𝑏𝑜𝑟𝑡 ∶∶ 𝑠𝑡𝑘 ; 𝑠𝑒𝑡̃︀ → ∐︀𝑡 ⋃︀𝑎𝑏𝑜𝑟𝑡 ;∅̃︀
Abort

∐︀𝑡 ⋃︀𝑒;𝑥 = 𝑒 ∶∶ 𝑠𝑡𝑘 ; 𝑠𝑒𝑡̃︀ ⇒ ∐︀𝑡 ′⋃︀𝑒′; 𝑠𝑡𝑘 ′; 𝑠𝑒𝑡 ′̃︀

∐︀𝑡 ⋃︀x = e ∶∶ stk; 𝑠𝑒𝑡̃︀ → ∐︀𝑡 ′⋃︀𝑠𝑡𝑘 ′; 𝑠𝑒𝑡 ′̃︀
AttrExprStep

Figure 5. AG equation-step rules

with rule Abort if an equations whose defining expression

is abort is atop the stack.

The AttrExprStep rule makes use of an expression eval-

uation relation

∐︀𝑡 ⋃︀𝑒; 𝑠𝑡𝑘 ; 𝑠𝑒𝑡̃︀ ⇒ ∐︀𝑡 ⋃︀𝑒 ; 𝑠𝑡𝑘 ; 𝑠𝑒𝑡̃︀.

This relation works on states that extend the equation state

to include the expression currently being evaluated in the

equation on the top of the stack. This relation is responsi-

ble for two types of evaluation steps. The first is to carry

out a small-step evaluation on the expression 𝑒 until it is

reduced to a value. In many instances, the tree 𝑡 , the stack

𝑠𝑡𝑘 and the set 𝑠𝑒𝑡 do not change. The second task is to de-

mand that a not-yet-computed attribute be computed; this

may manipulate the state by removing an equation from the

set and pushing it onto the stack. We discuss a few of the

rules shown in Figure 6 now, and continue when we describe

the correspondence between attribute grammar and Statix

evaluation states in Section 6. In the Eqals-True rule we

reduce an equality expression to true if 𝑒1 and 𝑒2 are equal.

We implement left-to-right short-circuiting conjunction, so

that an expression true && 𝑒 is reduced to 𝑒 and false && 𝑒

to false with axioms that we omit for brevity. When the left

operand of a conjunction is not a value, rule Conj-Step-Left

applies. Apply tells us how to step a function application.

We substitute arguments 𝑒1, ..., 𝑒𝑛 for 𝑥1, ..., 𝑥𝑛 in the function

body. These rules are similar to those for small-step seman-

tics in a functional language; similar rules are not shown.

References to complete attributes are reduced to their

values by rule Dmd-Complete. An attribute 𝑛.𝑎 is complete

if 𝑛.𝑎 ≠ �. Demanding an attribute from a visited node is

handled by rule Dmd-Visited. The equation defining the

attribute instance we demanded must be in the equation

set, so we remove it and push it onto the stack. When we

∐︀𝑡 ⋃︀𝑒 ; 𝑠𝑡𝑘 ; 𝑠𝑒𝑡̃︀ ⇒ ∐︀𝑡 ⋃︀𝑒 ; 𝑠𝑡𝑘 ; 𝑠𝑒𝑡̃︀

𝑒1 𝑣𝑎𝑙 𝑒2 𝑣𝑎𝑙 𝑒1 = 𝑒2

∐︀𝑡 ⋃︀𝑒1==𝑒2; 𝑠𝑡𝑘 ; 𝑠𝑒𝑡̃︀ ⇒ ∐︀𝑡 ⋃︀𝑡𝑟𝑢𝑒; 𝑠𝑡𝑘 ; 𝑠𝑒𝑡̃︀
Eqals-True

∐︀𝑡 ⋃︀𝑒1; 𝑠𝑡𝑘 ; 𝑠𝑒𝑡̃︀ ⇒ ∐︀𝑡
′
⋃︀𝑒′
1
; 𝑠𝑡𝑘 ′; 𝑠𝑒𝑡 ′̃︀

∐︀𝑡 ⋃︀e1&& e2 ; 𝑠𝑡𝑘 ; 𝑠𝑒𝑡̃︀ ⇒ ∐︀𝑡 ′⋃︀e′1&& e2 ; 𝑠𝑡𝑘 ′; 𝑠𝑒𝑡 ′̃︀
Conj-Step-Left

𝑓 = 𝜆𝑥1 𝜆𝑥𝑛 . 𝑒 𝑒′ = (︀𝑒1⇑𝑥1⌋︀...(︀𝑒𝑛⇑𝑥𝑛⌋︀𝑒

∐︀𝑡 ⋃︀f (e1, ..., en); 𝑠𝑡𝑘 ; 𝑠𝑒𝑡̃︀ ⇒ ∐︀𝑡 ⋃︀𝑒′; 𝑠𝑡𝑘 ; 𝑠𝑒𝑡̃︀
Apply

(𝑛.𝑎 = 𝑣) ∈ 𝑡 𝑣 ≠ �

∐︀𝑡 ⋃︀𝑛.𝑎; 𝑠𝑡𝑘 ; 𝑠𝑒𝑡̃︀ ⇒ ∐︀𝑡 ⋃︀𝑣 ; 𝑠𝑡𝑘 ; 𝑠𝑒𝑡̃︀
Dmd-Complete

𝑚 ∈ 𝑡 𝑚 𝑢𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑖𝑛 ∐︀𝑡 ⋃︀𝑠𝑡𝑘 ; 𝑠𝑒𝑡̃︀

{𝑚.𝑏 = 𝑒} ∪ 𝑠𝑒𝑡 ′ = 𝑖𝑛𝑠𝑡𝑎𝑛𝑡𝑖𝑎𝑡𝑒𝐸𝑞𝑠(𝑚)

𝑡 ′ = 𝑡 𝑤𝑖𝑡ℎ 𝑚 𝑣𝑖𝑠𝑖𝑡𝑒𝑑

∐︀𝑡 ⋃︀𝑚.𝑏; 𝑠𝑡𝑘 ; 𝑠𝑒𝑡̃︀ ⇒ ∐︀𝑡 ′⋃︀_;𝑚.𝑏 = 𝑒 ∶∶ 𝑠𝑡𝑘 ; 𝑠𝑒𝑡 ′ ∪ 𝑠𝑒𝑡̃︀
Dmd-Unvisited

𝑛 ∈ 𝑡 𝑛 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑖𝑛 ∐︀𝑡 ⋃︀𝑠𝑡𝑘 ; 𝑠𝑒𝑡̃︀

𝑠𝑒𝑡 = {𝑛.𝑎 = 𝑒} ∪ 𝑠𝑒𝑡 ′

∐︀𝑡 ⋃︀𝑛.𝑎; 𝑠𝑡𝑘 ; 𝑠𝑒𝑡̃︀ ⇒ ∐︀𝑡 ⋃︀𝑛.𝑎;𝑛.𝑎 = 𝑒 ∶∶ 𝑠𝑡𝑘 ; 𝑠𝑒𝑡 ′̃︀
Dmd-Visited

𝑚 ∉ 𝑡 𝑠𝑒𝑡 = {𝑚 = 𝑒} ∪ 𝑠𝑒𝑡 ′

∐︀𝑡 ⋃︀𝑚.𝑏; 𝑠𝑡𝑘 ; 𝑠𝑒𝑡̃︀ ⇒ ∐︀𝑡 ⋃︀𝑚.𝑏;𝑚 = 𝑒 ∶∶ 𝑠𝑡𝑘 ; 𝑠𝑒𝑡 ′̃︀
Dmd-NTA

Figure 6. AG expression-step rules

demand an attribute from an unvisited tree node, rule Dmd-

Unvisited applies. We instantiate the equations for that

node with node identifiers already stored in 𝑡 for all node

references, pick out the one that defines the attribute instance

we demanded, and put the remainder in the equation set. We

mark the node as visited in the tree. A nonterminal attribute

is demanded using rule Dmd-NTA. The equation defining

it must be in the stack, so we remove it in a similar way to

rule Dmd-Visited.

5 Translating Statix to Attribute Grammars

In translating Statix specifications to attribute grammars,

we note that attribute equations can also be seen as con-

straints, but ones that are directional, or functional, in that

they define the attribute on the left-hand side of the equation

using values and attributes references on the right hand side.

Since Statix is in a sense a relational language, constraints

may conceivably not fit this pattern. However, name and

type analyses written in Statix typically exhibit the more

SLE ’25, June 12–13, 2025, Koblenz, Germany Bessant and Van Wyk

directed style of constraints and thus have natural functional

counterparts. The query constraint, for example, follows this

pattern - the variable given as the final argument is substi-

tuted with the result of the query when it is solved, whereas

the first three arguments are inputs.

While Statix picks constraints to solve until none re-

main, demand-driven AG evaluation only solves equations

as needed. The translation thus uses a Boolean-valued ok at-

tribute. The equations defining this attribute are what drive

evaluation and demand that the interesting work, that which

corresponds to solving of constraints, is done. When ok is

true on the root node, the program is deemed correct; when

false, the program has an error. This corresponds in Statix,

respectively, to successfully solving all constraints or failing.

Syntax and functional predicates: Specifications in

Statix that define programming language semantics follow

a particular pattern as illustrated in Figure 3. Some predicates,

the ones annotated with @𝑠𝑦𝑛𝑡𝑎𝑥 , specify the grammar of

the object language and the constraints that need to be solved

for each construct (production) in the language. The names of

this predicates, e.g. main, dcl, exp, become the nonterminals

in the attribute grammar and the patterns in the nested match

construct specify the productions, e.g. prog, add, cons. The
arguments annotated as @𝑠𝑦𝑛 or @𝑖𝑛ℎ become synthesized

and inherited attributes for that nonterminal respectively.

Most names introduced in the exists constraint within a

syntactic case become local attributes in our translation. But

𝑠𝑐𝑜𝑝𝑒-typed names are realized as nonterminal attributes

that become the single-node tree representing a scope node

in the scope graph when there is a new constraint for that

scope in the body of the existential. The mod production on

line 24 in Figure 4 shows a scope defined in this way, corre-

sponding to the module scope being asserted on line 14 in

Figure 3. These correspondences can be seen in the declara-

tions of nonterminals exp and dcl, their attributes on line 7

and line 23, and productions add, ref, and mod in Figure 4.

Function predicates are those without the @𝑠𝑦𝑛𝑡𝑎𝑥 anno-

tation and these are more naturally translated into simple

functions that can be called from attribute equations.

Scope assertions: A Statix new constraint translates to

a nonterminal attribute definition whose right-hand side is

mkScope(𝑑), where 𝑑 is the data associated with the node,

e.g. sm’ on line 25 in Figure 4. The restriction on the location

of new constraints in Statix discussed in Section 3.2 makes

the translation much simpler, as it becomes easy to decide

whether a constraint {x∶ 𝑠𝑐𝑜𝑝𝑒} C corresponds to a local

or nonterminal attribute. If there is a new 𝑥 → 𝑡 constraint

in C, we use a nonterminal attribute. Otherwise the name

simply refers to an already defined scope we want to hold a

reference to, in which case we can use a local attribute.

Edge assertions: Scopes are implemented as tree nodes

created as nonterminal attributes. We represent edges as

reference attributes that occur on the 𝑆𝑐𝑜𝑝𝑒 nonterminal.

For LM, this nonterminal has four inherited edge attributes:

LEX, VAR, IMP, and MOD, corresponding to the edge labels in

Figure 1 and Figure 3. Their equations follow the definition

of a scope nonterminal attribute, such as those for sm’ on

lines 26–27 in Figure 4.

In Statix, all locations where a new scope is passed are

valid edge assertion sites. To capture this behavior in the

attribute grammar translation, we say that any nonterminal

with an inherited attribute s of type 𝑠𝑐𝑜𝑝𝑒 must have a syn-

thesized attribute 𝐿_s of type (︀𝑠𝑐𝑜𝑝𝑒⌋︀ for every edge label

𝐿 in the specification. Edge assertions translate to contribu-

tions to these attributes, whose purpose is to carry references

to edge targets as lists to the nonterminal attribute denoting

the source. Contributions have the form lst <- [item] for

list attributes. At compilation time, these contributions are

collected in the attribute grammar implementation into a

single equation, empty by default. Implicit contributions of

a child node’s instance of the same attribute are inserted if

the attribute occurs on that child. Thus a Statix constraint

sa -[LAB]-> sb is translated into the contribution sa.LAB <-

[sb] if sa is locally defined, and into top.LAB_sa <- [sb]

otherwise, where top is the left-hand side nonterminal col-

lecting these edge assertions up the tree. We also use contri-

butions for the ok attribute, as seen in Figure 4, which are

combined by conjunction similarly, with default value true.

Another useful consequence of the “permission to extend”

analysis in Statix [15] comes into play when considering

how we translate edge assertions. The requirement says that

edge assertions sourced at a particular scope may only occur

under the exists constraint which defines that scope’s name,

with respect to predicate expansion. Considering our restric-

tion that the new constraint for a scopemust be directly under

the exists constraint that asserts its name, we determine that

only synthesized attributes are required to copy edge target

references to a scope definition. In other words, the only

valid locations of edge assertions in Statix correspond in

our attribute grammar translation to nodes in the sub-tree

rooted at the scope’s nonterminal attribute definition site.

Consequently references to edge targets need only travel up

the syntax tree as members of these synthesized attributes.

Queries: In Statix, a query can only be solved when there

are no weakly critical edges for it in the scope graph. The

execution of the query itself does not result in the extension

of the scope graph. It simply runs to completion when the

scope graph has all requisite information present, and it is

picked from the current constraint set.

We capture this behavior by specifying that every query

depends on an auxiliary function dwce (“demand weakly

critical edges”). This function takes as arguments the same

start scope and path well-formedness regular expression as

a query, and traverses the scope graph with respect to a

derivative [4] of the query regular expression, so that all

reference attributes corresponding to the targets of weakly

critical edges for the query are demanded and evaluated.

Consequently, those target scopes and edges are built into

Scheduling the Construction and Interrogation of Scope Graphs Using Attribute Grammars SLE ’25, June 12–13, 2025, Koblenz, Germany

the scope graph. Since our query equations depends on these

dwce operations, the queries themselves do not demand that

any scopes or edges are be built into the scope graph. Thus

evaluating a query in the attribute grammar translation has

the same effect as solving its Statix counterpart.

Predicate uses: Applications of syntax predicates corre-

spond to the definition of inherited attributes on a syntax tree

node, as well as demanding its synthesized attributes. The

use of expr(s, l, tyL) on line 29 of Figure 3 corresponds to

the left equations on lines 10–11 of Figure 4, recalling that all

syntax nodes have the ok attribute. The inherited attribute

equations correspond to what are given in inh argument

positions in the predicate. On line 29 the first argument s

of the expr predicate use says that the lexical scope of the

left addition operand is the locally known s that is the ad-

dition’s lexical scope. We correspond in Figure 4 on line 10

by defining l’s inherited s attribute as the addition node

(top)’s attribute s. The arguments given in the syn argument

positions correspond to demands of synthesized attributes

from a tree node. In the addition example, tyL is used as the

third argument on line 29 of Figure 3. Since tyL corresponds

to a local attribute in the translation, we define that local as

the value of synthesized attribute l.ty on line 11 of Figure 4.

A function predicate use in Statix is translated as function

application in our attribute grammar. The term defined with

the nonterminal attribute matches that of the Statix function

predicate, although only containing its proper arguments.

We see an example of a function predicate use on line 25

in Figure 3, where tgt is used in case var to determine the

target scope of path p. This corresponds to the tgt function

call on line 20 of Figure 4.

6 Scheduling AG equations and Statix

constraints

This section formalizes the notion that a valid Statix sched-

ule of constraint solving can be determined by an attribute

grammar and that the results of each are the same.

6.1 Corresponding AG and Statix evaluation traces

Here we show that the demand-driven evaluation of an at-

tribute grammar translated from a Statix specification cor-

responds to valid schedule of constraint solving, based on

the operational semantics of each as given in Section 4.2 and

Appendix A. We define a correspondence between states in

the attribute grammar evaluation, ∐︀𝑡 ⋃︀𝑠𝑡𝑘 ; 𝑠𝑒𝑡̃︀, and the Statix

evaluation, ∐︀𝐺 ⋃︀𝐶̃︀, and extend this to evaluation traces. We

also provide a property stating that these correspondences

hold for all attribute grammar evaluation traces. The corre-

spondence relation

∐︀𝑡 ⋃︀𝑠𝑡𝑘 ; 𝑠𝑒𝑡̃︀ ≈ ∐︀𝐺 ⋃︀𝐶̃︀

has two primary components: that the scope graph con-

structed in 𝑡 corresponds to 𝐺 and the constraints in 𝐶 have

corresponding equations or expressions in 𝑠𝑡𝑘 or 𝑠𝑒𝑡 . The

first is specified 𝑠𝑔(𝑡) = ∐︀𝑆𝐺 , 𝐸𝐺 , 𝜌𝐺̃︀where 𝑠𝑔(𝑡) is the scope

graph ∐︀𝑆𝑡 , 𝐸𝑡 , 𝜌𝑡 ̃︀, and; 𝑆𝑡 are all node identifiers for trees in

𝑡 constructed by a mkScope production; 𝐸𝑡 are all edges 𝑠𝑥
-[𝐿]-> 𝑠𝑦 such that 𝑠𝑦 ∈ 𝑠𝑥 .𝐿 in the tree 𝑡 , that is 𝑠𝑦 is in the

appropriate edge attribute on 𝑠𝑥 ; 𝜌𝑡 consists of the mappings

𝑠 ↦ 𝑑 when 𝑠 .getData = 𝑑 in the tree 𝑡 .

The second requirement on𝐶 checks that each 𝑛𝑒𝑤 𝑠𝑖 → 𝑑

constraint in 𝐶 has an equation 𝑠𝑖 = mkScope(𝑑) equation

in 𝑠𝑡𝑘 or 𝑠𝑒𝑡 ; each 𝑠𝑥 -[𝐿]-> 𝑠𝑦 constraint corresponds to

the expression 𝑠𝑦 in an equation 𝑠𝑥 .𝐿 = (︀...𝑠𝑦 ...⌋︀; constraints

such as 𝑠𝑖𝑛𝑔𝑙𝑒 have equations with the corresponding at-

tribute grammar function or predicate as its body; equality

constraint 𝑡1==𝑡2 corresponds to a subexpression 𝑡1==𝑡2 in a

conjunction defining an ok equation.

Informally, the correspondence ≈ says that the scope graph

embedded in the tree in the attribute grammar state is the

same as that in the Statix state, and each constraint in

𝐶 𝑗 corresponds to an equation or expression in 𝑠𝑡𝑘𝑖 or 𝑠𝑒𝑡𝑖 .

This holds for the initial attribute grammar evaluation state

∐︀mkTree(𝑝, 0)⋃︀(︀𝑎𝑔0 .ok = 𝑟𝑜𝑜𝑡1.ok⌋︀;∅̃︀ and the corresponding
initial Statix evaluation state ∐︀∅⋃︀{main(𝑝)}̃︀.

The correspondence between a partial or terminating trace

of AG evaluation steps and Statix steps is denoted as ≈
∗

and defined as:

∐︀𝑡0⋃︀𝑠𝑡𝑘0; 𝑠𝑒𝑡0̃︀ →
∗
∐︀𝑡𝑛′ ⋃︀𝑠𝑡𝑘𝑛′ ; 𝑠𝑒𝑡𝑛′̃︀ ≈

∗
∐︀𝐺0⋃︀𝐶0̃︀ →

∗
∐︀𝐺 ′𝑚 ⋃︀𝐶

′

𝑚̃︀

𝑛′ = 𝑛 − 1 𝑚′ ≤𝑚 ∐︀𝑡𝑛 ⋃︀𝑠𝑡𝑘𝑛 ; 𝑠𝑒𝑡𝑛̃︀ ≈ ∐︀𝐺𝑚 ⋃︀𝐶𝑚̃︀

∐︀𝑡0⋃︀𝑠𝑡𝑘0; 𝑠𝑒𝑡0̃︀ →
∗
∐︀𝑡𝑛 ⋃︀𝑠𝑡𝑘𝑛 ; 𝑠𝑒𝑡𝑛̃︀ ≈

∗
∐︀𝐺0⋃︀𝐶0̃︀ →

∗
∐︀𝐺𝑚 ⋃︀𝐶𝑚̃︀

The correspondence between traces accommodates steps in

the attribute grammar evaluation that do not change the

Statix state or correspond to a Statix rule; in this case

𝑚′ = 𝑚. It also accommodates the case in which one at-

tribute grammar step corresponds to more than one Statix

steps; in this case 𝑚′ < 𝑚 − 1. Some attribute grammar

steps do not correspond to a step in Statix; copying in-

herited scopes down the tree, e.g. line 10 of Figure 4 and

the equation on line 28 collecting edges up the tree are ex-

amples of this. Another consideration is that there may be

multiple Statix edge assertions that correspond to one at-

tribute equation that represents the targets of those edges

as a list. So stepping from ∐︀𝑡 ⋃︀𝑠3.𝑉𝐴𝑅 = (︀𝑠8, 𝑠13⌋︀ ∶∶ 𝑠𝑡𝑘
′
; 𝑠𝑒𝑡̃︀

to ∐︀𝑡 ′⋃︀𝑠𝑡𝑘 ′; 𝑠𝑒𝑡̃︀ where 𝑠3.𝑉𝐴𝑅 = (︀𝑠8, 𝑠13⌋︀ ∈ 𝑡
′
, corresponds

in Statix to the transition ∐︀𝐺 ⋃︀𝑠3 -[VAR]-> 𝑠8;𝐶̃︀
Op-Edge

ÐÐÐÐ→

∐︀𝐺 ⋃︀𝑠3 -[VAR]-> 𝑠13;𝐶̃︀
Op-Edge

ÐÐÐÐ→ ∐︀𝐺 ⋃︀𝐶̃︀. In this case, if the first

attribute grammar state above corresponds to the first Statix

state, then the second attribute grammar state corresponds

to the last Statix state above. But during this evaluation

there is no attribute grammar state that corresponds to the

second Statix state, where only one of the edges has been

built into the scope graph.

Theorem 1 uses this correspondence to state that for any

partial attribute grammar evaluation trace beginning at the

SLE ’25, June 12–13, 2025, Koblenz, Germany Bessant and Van Wyk

initial state, there is a corresponding Statix evaluation trace.

We later use this result to establish that the attribute grammar

and Statix evaluations produce the same results.

Theorem 1. For a program 𝑝 (with start symbol of𝑚𝑎𝑖𝑛)

with the partial or terminating trace

∐︀𝑡0⋃︀𝑠𝑡𝑘0; 𝑠𝑒𝑡0̃︀ →
∗
∐︀𝑡𝑛 ⋃︀𝑠𝑡𝑘𝑛 ; 𝑠𝑒𝑡𝑛̃︀

where 𝑡0 = 𝑚𝑘𝑇𝑟𝑒𝑒(𝑝,𝑚0), 𝑠𝑡𝑘0 = 𝑚0.𝑜𝑘 = 𝑒 and 𝑠𝑒𝑡0 = ∅,

there exists

∐︀𝐺0⋃︀𝐶0̃︀ →
∗
∐︀𝐺𝑚 ⋃︀𝐶𝑚̃︀

where 𝐺0 = ∐︀∅,∅,∅̃︀ and 𝐶0 = {𝑚𝑎𝑖𝑛(𝑝)} such that

∐︀𝑡0⋃︀𝑠𝑡𝑘0; 𝑠𝑒𝑡0̃︀ →
∗
∐︀𝑡𝑛 ⋃︀𝑠𝑡𝑘𝑛 ; 𝑠𝑒𝑡𝑛̃︀ ≈

∗
∐︀𝐺0⋃︀𝐶0̃︀ →

∗
∐︀𝐺𝑚 ⋃︀𝐶𝑚̃︀.

Theorem 1 is can be proved by induction on the length

of the attribute grammar evaluation trace ∐︀𝑡0⋃︀𝑠𝑡𝑘0; 𝑠𝑒𝑡0̃︀ →
∗

∐︀𝑡𝑛 ⋃︀𝑠𝑡𝑘𝑛 ; 𝑠𝑒𝑡𝑛̃︀; we provide a partial sketch of that proof below.

Each equation step taken to extend that trace will add zero or

more states in the corresponding Statix trace ∐︀𝐺0⋃︀𝐶0̃︀ →
∗

∐︀𝐺𝑚 ⋃︀𝐶𝑚̃︀ ensuring that ∐︀𝑡𝑛 ⋃︀𝑠𝑡𝑘𝑛 ; 𝑠𝑒𝑡𝑛̃︀ ≈ ∐︀𝐺𝑚 ⋃︀𝐶𝑚̃︀. We con-

sider the most relevant attribute grammar evaluation rules

and describe how the correspondence is maintained.

Building scopes: In state ∐︀𝑡 ⋃︀𝑛 = mkScope(𝑑) ∶∶ 𝑠𝑡𝑘 ; 𝑠𝑒𝑡̃︀,

rule CompNTA steps to a state that corresponds to the Statix

state after solving a new 𝑠𝑛 constraint, where 𝑛 corresponds

to 𝑠𝑛 , by applying Op-Node. If 𝑠𝑛 is the name for the new tree

created by CompNTA, 𝑑 is a data term that becomes the sole

child of node 𝑠𝑛 . On the Statix side, we use 𝑠𝑛 as the scope

identifier in the Op-Node rule to add a new scope to𝐺 in the

corresponding Statix state and update 𝜌 with 𝑠𝑛 ↦ 𝑑 . The

new 𝑠𝑛 constraint is removed from the Statix constraint set,

and equation 𝑠𝑛 = mkScope(𝑑) is popped from the attribute

grammar stack. Thus correspondence ≈
∗
is maintained.

Building edges: In state ∐︀𝑡 ⋃︀𝑠𝑛 .𝐿𝐴𝐵 = (︀𝑠1, ..., 𝑠𝑚⌋︀ ∶∶ 𝑠𝑡𝑘 ; 𝑠𝑒𝑡̃︀

where all 𝑠𝑖 ’s are scope node references, we apply the Com-

pAttr rule to complete the attribute instance 𝑠𝑛 .𝐿𝐴𝐵 with

value (︀𝑠1, ..., 𝑠𝑚⌋︀. In our representation of scope graphs, this

builds 𝑚 new edges of label 𝐿𝐴𝐵 and targets 𝑠1, ..., 𝑠𝑚 . We

follow suit in Statix by identifying the𝑚 edge assertions

whose source is 𝑠𝑛 , label is 𝐿𝐴𝐵 and target is one of 𝑠1, ..., 𝑠𝑚 .

This entails several applications of the Op-Edge Statix rule.

Thus the state resulting from one step in the attribute gram-

mar corresponds to the state we get in Statix after solving

the𝑚 edge assertions. Correspondence is maintained, as in

the attribute grammar scope graph we built edges from 𝑠𝑛 to

𝑠1, ..., 𝑠𝑚 , just as we did in Statix by applications of Op-Edge.

Executing queries: In the attribute grammar state ∐︀𝑡 ⋃︀𝑛.𝑎 =

query(𝑑𝑤𝑐𝑒, 𝑠, 𝑟, 𝐷) ∶∶ 𝑠𝑡𝑘 ; 𝑠𝑒𝑡̃︀ we step the function ap-

plication using rule Apply. A number of rules in Figure 5

and Figure 6 will then be applied until we have 𝑛.𝑎 = 𝑣 atop

the stack, where 𝑣 is the result of the query. We then use

rule CompAttr to put 𝑛.𝑎 = 𝑣 in the tree, marking 𝑛.𝑎 as

a complete attribute instance. In Statix we apply rule Op-

Query to execute the query. In so doing, the result of the

query, that is equal to 𝑣 , is substituted for name 𝑥 in the

remaining constraint set. The work done in the attribute

grammar between Apply and CompAttr for 𝑛.𝑎 is not in-

teresting work, as use of dwce ensures that before the query

is executed, all of the scope graph that it can traverse has

been built. Thus correspondence is maintained between the

use of Apply and CompAttr. Each instance of variable 𝑥 we

had in the Statix constraint set corresponded to 𝑛.𝑎. Since,

𝑛.𝑎 is now complete with the same query result, the terms

set which replaced 𝑥 in Statix corresponds to 𝑣 .

Singleton: If we have ∐︀𝑡 ⋃︀𝑛.𝑎 = single(𝑡𝑠) ∶∶ 𝑠𝑡𝑘 ; 𝑠𝑒𝑡̃︀ as

the attribute grammar state, we have ∐︀𝐺 ⋃︀single(𝑡𝑠′, 𝑥);𝐶̃︀

in Statix, where value 𝑡𝑠 corresponds to 𝑡𝑠′ and, and 𝑥 is

a term variable that corresponds to 𝑛.𝑎. In the attribute

grammar we apply singleton using Apply. This results in

a new state ∐︀𝑡 ⋃︀𝑛.𝑎 = case 𝑡𝑠 of [𝑥] -> 𝑥 end ∶∶ 𝑠𝑡𝑘 ; 𝑠𝑒𝑡̃︀.

There are now two cases to consider:When 𝑡𝑠 is a single-

ton: In the attribute grammar, when 𝑡𝑠 = {𝑡𝑚}, we step

to: ∐︀𝑡 ⋃︀𝑛.𝑎 = 𝑡𝑚 ∶∶ 𝑠𝑡𝑘 ; 𝑠𝑒𝑡̃︀. In Statix there is a require-

ment that 𝑡𝑚 is ground, ensured by the attribute grammar

stepping 𝑡𝑚 as an expression until it is a value. The equa-

tion is then completed and the value is stored in the tree;

this corresponds to the solving of the single(𝑡𝑠′, 𝑥) con-

straint in Statix using Op-Single-True. Both the equa-

tion and the constraint are the removed from their respec-

tive states and the correspondence is maintained. When

𝑡𝑠 is not a singleton: Due to case matching failure, the

state ∐︀𝑡 ⋃︀𝑛.𝑎 = case 𝑡𝑠 of [𝑥] -> 𝑥 end ∶∶ 𝑠𝑡𝑘 ; 𝑠𝑒𝑡̃︀ steps to

∐︀𝑡 ⋃︀𝑛.𝑎 = abort ∶∶ 𝑠𝑡𝑘 ; 𝑠𝑒𝑡̃︀. The Abort rule then steps to the

final attribute grammar state ∐︀𝑡 ⋃︀abort;∅̃︀. This corresponds

to using the Op-Single-False rule to step the Statix state

to ∐︀𝐺 ⋃︀{false}̃︀. At this point the correspondence between

states holds. Attribute grammar rules that correspond to

solving the the min, inhabited constraints follow the same

pattern as described above except that they will not abort.

Type equality: Consider checking the constraint tyL ==

INT() on line 29 of Figure 3 when tyL has been instantiated to

INT(). This corresponds to the AG state ∐︀𝑡 ⋃︀𝑚.𝑜𝑘 = INT() ==

INT() && 𝑒 ∶∶ 𝑠𝑡𝑘 ; 𝑠𝑒𝑡̃︀ and the Statix state ∐︀𝐺 ⋃︀INT() ==

INT();𝐶̃︀ as our Statix state. This equality check in Statix

was mapped to an attribute contribution to top.ok on line 11

in Figure 4 and then all such contributions are folded into a

single nested conjunction in an equation expression. Then

in the attribute grammar we use rules ConjLeftStep fol-

lowed by Eq-True to transition from ∐︀𝑡 ⋃︀𝑚.𝑏 = INT() ==

INT()&&𝑒 ∶∶ 𝑠𝑡𝑘 ; 𝑠𝑒𝑡̃︀ in two steps to ∐︀𝑡 ⋃︀𝑚.𝑏 = true && 𝑒 ∶∶

𝑠𝑡𝑘 ; 𝑠𝑒𝑡̃︀. Over in Statixwe have state ∐︀𝐺 ⋃︀INT() == INT();𝐶̃︀

and can step immediately to ∐︀𝐺 ⋃︀𝐶̃︀ using rule Op-Eq-True

when we fire the Eq-True for expressions.

Predicate expansion: In AG state ∐︀𝑡 ⋃︀𝑛.𝑎 = ...𝑚.𝑏... ∶∶

𝑠𝑡𝑘 ; 𝑠𝑒𝑡̃︀where we are ready to demand𝑚.𝑏, and𝑚 is a tree of

nonterminal type𝑛𝑡 that has been constructed but not yet vis-

ited. This corresponds to the Statix state ∐︀𝐺 ⋃︀𝑛𝑡(...,𝑚′, ...);𝐶̃︀,

Scheduling the Construction and Interrogation of Scope Graphs Using Attribute Grammars SLE ’25, June 12–13, 2025, Koblenz, Germany

where𝑚′ is the syntactic term corresponding to the tree𝑚;

e.g., the constraint exp(s, r, tyR) on line 30. The Dmd-

Unvisited rule causes the equations in that production to be

instantiated and added to the equation set, with the exception

of the equation defining𝑚.𝑏 which is pushed on to the stack.

If a ref production built r then r’s equations are instantiated

for that node in this process. In Statix this corresponds to

expanding the corresponding syntax predicate using rule

Op-Predicate, solving the immediate match, solving the

immediate exists constraint with rule OpExists, and finally

expanding any conjunctions. The result is that the constraint

set now includes all constraints from the production-case

corresponding to𝑚′, instantiated with fresh names that all

correspond to local attributes of node𝑚.

6.2 Equivalent results

The correspondence ≈
∗
of AG and Statix evaluation traces

ensures that they produce the same scope graph and results

for name and type-analysis. The stack and ok attribute in the

AG state imply (⊃) certain corresponding conditions in the

Statix state. This is stated in the following theorem.

Theorem 2. For an attribute grammar generated from a

Statix specification without spurious constraints (see be-

low) and for a program 𝑝 we have the terminating attribute

grammar trace, meaning no more steps can be made,

∐︀𝑚𝑘𝑇𝑟𝑒𝑒(𝑝, 0)⋃︀𝑟0.𝑜𝑘 = 𝑒 ;∅̃︀ →
∗
∐︀𝑡 ⋃︀𝑠𝑡𝑘 ; 𝑠𝑒𝑡̃︀

and this trace corresponds, via ≈
∗
, to

∐︀∐︀∅,∅,∅̃︀⋃︀{𝑚𝑎𝑖𝑛(𝑝)}̃︀ →∗ ∐︀𝐺 ⋃︀𝐶̃︀

then

1. 𝑠𝑡𝑘 = ◻ ⊃ 𝑟0.𝑜𝑘 = 𝑡𝑟𝑢𝑒 ⊃ 𝑠𝑔(𝑡) =𝐺 ∧𝐶 = ∅, or

2. 𝑠𝑡𝑘 = ◻ ⊃ 𝑟0.𝑜𝑘 = 𝑓 𝑎𝑙𝑠𝑒 ⊃ 𝑠𝑔(𝑡) =𝐺 ∧𝐶 = {𝑓 𝑎𝑙𝑠𝑒}, or

3. 𝑠𝑡𝑘 = abort ⊃ 𝑠𝑔(𝑡) =𝐺 ∧𝐶 = {𝑓 𝑎𝑙𝑠𝑒}, or

4. 𝑠𝑡𝑘 ≠ abort ∧ 𝑠𝑡𝑘 ≠ ◻ ⊃ 𝑠𝑔(𝑡) =𝐺 .

The first case states that if the final stack is empty and

the ok attribute is true, then the scope graphs are the same

and there are no Statix constraints left to solve, indicating

success on the Statix side. The second and third cases are

similar except for the failure cases. In these cases the contents

of the equation 𝑠𝑒𝑡 do not matter. The fourth case is when

there was a cycle in the attribute grammar evaluation, and

the Statix specification was “stuck” due to a missing weakly

critical edge or other mutually dependent constraints. In the

given semantics, a cycle amounts to getting “stuck” on Dmd-

Visited since it will not find the being demanded equation

(the second time) in the set because it is already in the stack.

A rule could be added to raise a cycle error, similar to the

abort if an explicit error was desired. These four cases follow

from the correspondence in Theorem 1.

Not taken into account in Theorem 2 is the case when

a Statix specification has constraints that do not need to

be solved to generate the scope graph or establish program

correctness. These correspond to equations in the AG that

were never demanded in the evaluation process. These are

not interesting with respect to using attribute evaluation to

discover a valid schedule for constraint solving, and they

can be eliminated with a alternative translation in which

every constraint generates equations that contribute to the

ok attribute, thus ensuring that they are all evaluated.

7 Discussion

The attribute grammar generated by the translation in Sec-

tion 5 is meant to mimic the evaluation of Statix constraints,

but it is not written in a style one would likely see in an AG,

even one using scope graphs. Notably, a hand-written AG

would not use dwce to demand all the relevant scope graph

nodes and edges be built before applying a query. Instead,

the query function can be the computation that demands
the construction of those scopes and edges, effectively inter-

leaving the Statix constraints that do this with the query

constraint. The query could also be written to return only

the visible declarations found, instead of all reachable ones,

and then filter out those shadowed by other declarations.

This shows the difference between the eager evaluation in

Statix and the lazy scheduling of equations in AGs.

All the “bookkeeping” steps in attribute grammar evalu-

ation that correspond to equations being solved but do not

have a corresponding step in the Statix evaluation can be

seen as evidence of the conciseness of Statix specifications

(like those in Figure 3) versus the more verbose specifica-

tions for attribute grammars (e.g. those in Figure 4). The

attribute grammar specifications require equations to pass a

scope down the tree in inherited attributes, and synthesized

attributes to pull edge contributions up. The substitution of

an identifier created by solving an exists constraint into all
the constraints in its body corresponds to all those inherited

attribute equations that pass a information down the tree.

We experimentally validated some aspects of Theorem 2

in an implementation artifact that accompanies the paper.

It consists of a Silver implementation of our annotated

Statix language that translates these specifications to (𝑖)

plain Statix that can be run with Rouvoet et al.’s Min-

iStatix system [15] (𝑖𝑖) to the operational semantics of Sec-

tion 4.2 implemented in OCaml, and (𝑖𝑖𝑖) to a Silver at-

tribute grammar specification. We have written specifica-

tions for 3 versions of LM implementing sequential, paral-

lel, and self-referential/recursive import semantics; all three

have the same syntax, just different import semantics. We

also have several sample LM programs that can then be run

through all 3 implementations of all the 3 different import

semantics. The artifact checks that the three implementa-

tions always terminate with the corresponding MiniStatix

satisfiability/stuck and AG ok/abort/cycle results. That is,

Theorem 2 is verified with the exception of automatically

checking that the scope graphs are the same, but manual

SLE ’25, June 12–13, 2025, Koblenz, Germany Bessant and Van Wyk

inspections do show that these are the same. This includes

specifications for import semantics that lead to Statix get-

ting "stuck" and to the two AG systems exhibiting cycles in

attribute evaluation. It is worth noting that the lazy evalua-

tion of expressions in attribute equations in Silver gives the

same results as the eager evaluation of expressions in the

OCaml implementations. It is only the laziness in scheduling

the evaluation of attribute equations that matters.

8 Related Work

Visser and his colleagues have written a serious of papers re-

fining and extending their initial notion of scope graphs [14]

to include edge labels [15, 17] to describe relationships like

lexical enclosement and name declarations in a scope. Name

resolution maps references to the most visible declarations,

with respect to a language-wide path ordering. Later work [1,

17] introduced constraint-solving as a means of performing

name and type analysis of programs based on scope graphs.

Poulsen et al. [2] introduce a monadic interface for phased

name resolution in Mophasco, which provides generic effect-

ful operations for carrying out name resolution using scope

graphs. Inspired by Gibbons et al. [8], Mophasco makes use

of applicative functors to compositionally map abstract syn-

tax trees onto type checking constraints defined as phased

monadic computations. This yields an approach which can

support language features which Statix cannot. In partic-

ular, it lends support to the unordered import semantics of

the original LM definition by Neron et al. [14].

Kastens and Waite [11] provide an alternate scope graphs

model for name analysis, implemented in attribute grammars.

The structure of their scope graphs differs in some respects

from Visser et al.’s. It categorizes edges into two kinds; parent
edges and path edges. The former corresponding to our use

of the LEX edge label, and the latter being labeled by positive

integers associated with particular relations. While attribute

grammars are used in the implementation they do not rely on

demand-driven evaluation and thus must maintain a work-

list for name analysis to schedule various resolution tasks.

Reference attribute grammars support a number of differ-

ent styles for solving name resolution problems. A common

approach uses and environment as an inherited attribute that

contains binding of all names in scope to their type or other

relevant information. References are especially useful in this

still when the names are bound to references back to the

declaration node for the name. Once the name is looked up

in the environment, any attributes, such as type or location,

can be immediately accessed. Another style is closer to that

of scope graphs. Here the inherited attribute is a reference to

the syntax tree node defining the enclosing scope. This node

can maintain a list of declarations in it that can be search

when looking for a declaration. The node can also maintain

a reference to its enclosing parent or imported scopes so that

those can also be queried if need be. In this approach the

scope graph is very much present in the edges superimposed

over the tree. Visser et al. might claim these approaches

are one that are more ad-hoc and more closely tied to the

language specification than the scope graph and constraint

solving approach they have proposed.

9 Future Work and Conclusion

The use of demand-driven evaluation of reference attribute

grammars to schedule the construction and analysis of scope

graphs opens some interesting avenues of future work. One

is to extend the Statix translator support Statix specifica-

tions which are not as restricted as discussed Section 3.2.

For instance, to what extent can the @𝑠𝑦𝑛𝑡𝑎𝑥 , @𝑠𝑦𝑛, @𝑖𝑛ℎ,

and type annotations could be inferred? It would also be

possible to restore Statix unification with a more sophis-

ticated translation. This could lead to a more user-friendly

version of Statix that is closer to the original, even though

our formulation is sufficient for our goals.

Since a cycle in the attribute grammar can correspond

to Statix getting stuck on missing weakly critical edges, a

natural next step would be to translate to circular attribute

grammars [7, 13, 16]. These cycles arise when import decla-

ration are not interpreted in a sequential manner as they are

in the version of LM discussed here. More interesting are the

import models in which the import order is unordered, or

when imports can be self-influencing. This later is seen the

Rust language where an import declaration may bring into

scope new names that cause that import resolution to not

be stable and to then “re-import” based on the new names.

These models are noted as being ones that Statix cannot

solve due to constraints becoming stuck [2, 15]. We have

begun experimenting with this idea and have a prototype

that translates Statix specifications into the JastAdd sys-

tem (that includes both circular and reference attributes [13])

that has shown promising initial results.

We are also investigating the use of scope graphs in the

Silver attribute grammar specifications for (domain-specific)

languages through a library of commonly used constructs,

such as the mkScope production, and an extension to Silver

for writing Statix-like constraints directly instead of the

equations that constraints translate to as seen in Section 5.

To conclude, this paper formalizes what has been the folk-

lore in the attribute grammar community for some time, that

scope graphs are naturally specified in reference attributes

grammars. The translation of Statix specifications into ref-

erence AGs also illustrates the differences between the two

approaches and suggests future work that may tie them both

closer together.

Acknowledgments

This work was supported in part by the National Science

Foundation, award #2123987. We thank the SLE reviews for

the helpful comments that improved this paper.

Scheduling the Construction and Interrogation of Scope Graphs Using Attribute Grammars SLE ’25, June 12–13, 2025, Koblenz, Germany

References

[1] Hendrik van Antwerpen, Pierre Néron, Andrew Tolmach, Eelco Visser,

and Guido Wachsmuth. 2016. A constraint language for static seman-

tic analysis based on scope graphs. In Proceedings of the 2016 ACM
SIGPLAN Workshop on Partial Evaluation and Program Manipulation
(St. Petersburg, FL, USA) (PEPM ’16). Association for Computing Ma-

chinery, New York, NY, USA, 49–60. doi:10.1145/2847538.2847543
[2] Casper Bach Poulsen, Aron Zwaan, and Paul Hübner. 2023. A Monadic

Framework for Name Resolution in Multi-phased Type Checkers. In

Proceedings of the 22nd ACM SIGPLAN International Conference on
Generative Programming: Concepts and Experiences (Cascais, Portugal)
(GPCE 2023). Association for Computing Machinery, New York, NY,

USA, 14–28. doi:10.1145/3624007.3624051
[3] John Tang Boyland. 2005. Remote attribute grammars. J. ACM 52, 4

(2005), 627–687. doi:10.1145/1082036.1082042
[4] Janusz A Brzozowski. 1964. Derivatives of regular expressions. Journal

of the ACM (JACM) 11, 4 (1964), 481–494.
[5] Torbjörn Ekman and Görel Hedin. 2004. Rewritable Reference Attrib-

uted Grammars.. In Proceedings of the 18th European Confernece on
Object Oriented Programming (ECOOP) (Lecture Notes in Computer Sci-
ence, Vol. 3086). Springer, Berlin, Heidelberg, 144–169. doi:10.1007/978-
3-540-24851-4_7

[6] Torbjörn Ekman and Görel Hedin. 2007. The JastAdd system - modular

extensible compiler construction. Science of Computer Programming
69 (December 2007), 14–26. Issue 1-3. doi:10.1016/j.scico.2007.02.003

[7] R. Farrow. 1986. Automatic Generation of Fixed-Point-Finding Eval-

uators for Circular, but Well-Defined, Attribute Grammars. ACM
SIGPLAN Notices 21, 7 (1986), 85–98. doi:10.1145/13310.13320

[8] Jeremy Gibbons, Donnacha Oisín Kidney, Tom Schrijvers, and Nico-

las Wu. 2022. Breadth-First Traversal via Staging. In Mathematics
of Program Construction, Ekaterina Komendantskaya (Ed.). Springer

International Publishing, Cham, 1–33.

[9] Görel Hedin. 2000. Reference Attribute Grammars. Informatica 24, 3
(2000), 301–317.

[10] T. Johnsson. 1987. Attribute grammars as a functional programming

paradigm. In Proc. of Functional Programming Languages and Computer
Architecture (Lecture Notes in Computer Science, Vol. 274). Springer-
Verlag, Berlin, Heidelberg, 154–173. doi:10.1007/3-540-18317-5_10

[11] Uwe Kastens and William Waite. 2017. Name analysis for modern

languages: a general solution. Software: Practice and Experience 41

(2017), 1597—1631.

[12] Donald E. Knuth. 1968. Semantics of Context-free Languages. Mathe-
matical Systems Theory 2, 2 (1968), 127–145. doi:10.1007/BF01692511
Corrections in 5(1971) pp. 95–96.

[13] Eva Magnusson and Görel Hedin. 2007. Circular reference attributed

grammars - their evaluation and applications. Science of Computer Pro-
gramming 68, 1 (2007), 21–37. doi:10.1016/j.scico.2005.06.005 Special

Issue on the ETAPS 2003 Workshop on Language Descriptions, Tools

and Applications (LDTA ’03).

[14] Pierre Néron, Andrew P. Tolmach, Eelco Visser, and GuidoWachsmuth.

2015. A Theory of Name Resolution. In Programming Languages
and Systems - 24th European Symposium on Programming, ESOP 2015
(Lecture Notes in Computer Science, Vol. 9032), Jan Vitek (Ed.). Springer,

Berlin, Heidelberg, 205–231. doi:10.1007/978-3-662-46669-8_9
[15] Arjen Rouvoet, Hendrik van Antwerpen, Casper Bach Poulsen, Rob-

bert Krebbers, and Eelco Visser. 2020. Knowing when to ask: sound

scheduling of name resolution in type checkers derived from declara-

tive specifications. Proc. ACM Program. Lang. 4, OOPSLA, Article 180
(Nov. 2020), 28 pages. doi:10.1145/3428248

[16] A. Sasaki and S. Sassa. 2000. Circular Attribute Grammars with Re-

mote Attribute References. In Proceedings of 3rd Workshop on Attribute
Grammars and their Applications. 125–140.

[17] Hendrik van Antwerpen, Casper Bach Poulsen, Arjen Rouvoet, and

Eelco Visser. 2018. Scopes as types. Proc. ACM Program. Lang. 2,
OOPSLA, Article 114 (Oct. 2018), 30 pages. doi:10.1145/3276484

[18] Eric Van Wyk, Derek Bodin, Jimin Gao, and Lijesh Krishnan. 2010.

Silver: an Extensible Attribute Grammar System. Science of Computer
Programming 75, 1–2 (January 2010), 39–54. doi:10.1016/j.scico.2009.
07.004

[19] Harold H. Vogt, S. Doaitse Swierstra, and Matthijs F. Kuiper. 1989.

Higher Order Attribute Grammars. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI). ACM, New York, NY, USA, 131–145. doi:10.1145/73141.74830

[20] Aron Zwaan and Hendrik van Antwerpen. 2023. Scope Graphs: The

Story so Far. In Eelco Visser Commemorative Symposium, EVCS 2023,
April 5, 2023, Delft, The Netherlands (OASIcs, Vol. 109), Ralf Lämmel,

Peter D. Mosses, and Friedrich Steimann (Eds.). Schloss Dagstuhl

- Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 32:1–32:13.

doi:10.4230/OASIcs.EVCS.2023.32

https://doi.org/10.1145/2847538.2847543
https://doi.org/10.1145/3624007.3624051
https://doi.org/10.1145/1082036.1082042
https://doi.org/10.1007/978-3-540-24851-4_7
https://doi.org/10.1007/978-3-540-24851-4_7
https://doi.org/10.1016/j.scico.2007.02.003
https://doi.org/10.1145/13310.13320
https://doi.org/10.1007/3-540-18317-5_10
https://doi.org/10.1007/BF01692511
https://doi.org/10.1016/j.scico.2005.06.005
https://doi.org/10.1007/978-3-662-46669-8_9
https://doi.org/10.1145/3428248
https://doi.org/10.1145/3276484
https://doi.org/10.1016/j.scico.2009.07.004
https://doi.org/10.1016/j.scico.2009.07.004
https://doi.org/10.1145/73141.74830
https://doi.org/10.4230/OASIcs.EVCS.2023.32

SLE ’25, June 12–13, 2025, Koblenz, Germany Bessant and Van Wyk

A Statix operational semantics

This appendix contains many of the rules defining the oper-

ational semantics of Statix, with our small modifications.

These closely follow the original rules [15].

∐︀𝐺 ⋃︀𝐶̃︀ → ∐︀𝐺 ⋃︀𝐶̃︀

∐︀𝐺 ⋃︀true;𝐶̃︀ → ∐︀𝐺 ⋃︀𝐶̃︀
Op-True

∐︀𝐺 ⋃︀false;𝐶̃︀ → ∐︀𝐺 ⋃︀{false}̃︀
Op-False

𝑡 𝑔𝑟𝑜𝑢𝑛𝑑

∐︀𝐺 ⋃︀𝑥:=𝑡 ;𝐶̃︀ → ∐︀𝐺 ⋃︀(︀𝑡⇑𝑥⌋︀𝐶̃︀
Op-Define

𝑡1 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡2 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡1 = 𝑡2

∐︀𝐺 ⋃︀𝑡1==𝑡2;𝐶̃︀ → ∐︀𝐺 ⋃︀𝐶̃︀
Op-Eq-True

𝑡1 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡2 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡1 ≠ 𝑡2

∐︀𝐺 ⋃︀𝑡1==𝑡2;𝐶̃︀ → ∐︀𝐺 ⋃︀false;𝐶̃︀
Op-Eq-False

∐︀𝐺 ⋃︀(𝐶1,𝐶2);𝐶̃︀ → ∐︀𝐺 ⋃︀𝐶1;𝐶2;𝐶̃︀ Op-Conj

𝑡 𝑔𝑟𝑜𝑢𝑛𝑑

∐︀𝐺 ⋃︀single({𝑡}, 𝑥);𝐶̃︀ → ∐︀𝐺 ⋃︀(︀𝑡⇑𝑥⌋︀𝐶̃︀
Op-Single-True

∄𝑡 . 𝑡𝑠 = {𝑡}

∐︀𝐺 ⋃︀single(𝑡𝑠, 𝑥);𝐶̃︀ → ∐︀𝐺 ⋃︀false;𝐶̃︀
Op-Single-False

𝐶′′ = (︀𝑖𝑑1⇑𝑥1⌋︀...(︀𝑖𝑑𝑛⇑𝑥𝑛⌋︀𝐶
′ 𝑖𝑑𝑖 fresh ids

∐︀𝐺 ⋃︀{𝑥1, ..., 𝑥𝑛}𝐶
′
;𝐶̃︀ → ∐︀𝐺 ⋃︀𝐶′′;𝐶̃︀

OpExists

𝑝(𝑥1, ..., 𝑥𝑛):- 𝐶. 𝐶′ = (︀𝑡1⇑𝑥1⌋︀...(︀𝑡𝑛⇑𝑥𝑛⌋︀𝐶

∐︀𝐺 ⋃︀𝑝(𝑡1, ..., 𝑡𝑛);𝐶̃︀ → ∐︀𝐺 ⋃︀𝐶
′
;𝐶̃︀

Op-Predicate

𝑠 ∉ 𝑆𝐺

∐︀∐︀𝑆, 𝐸, 𝜌̃︀⋃︀new 𝑠 → 𝑡 ;𝐶̃︀ → ∐︀∐︀𝑠 ;𝑆, 𝐸, (︀𝑠 ↦ 𝑡⌋︀𝜌̃︀⋃︀(︀𝑠⇑𝑥⌋︀𝐶̃︀
Op-Node

𝑠1, 𝑠2 ∈ 𝑆𝐺

∐︀∐︀𝑆, 𝐸, 𝜌̃︀⋃︀𝑠1 − 𝑙 → 𝑠2;𝐶̃︀ → ∐︀∐︀𝑆, (𝑠1, 𝑙, 𝑠2);𝐸, 𝜌̃︀⋃︀𝐶̃︀
Op-Edge

𝜌(𝑠) = 𝑡

∐︀𝐺 ⋃︀getData(𝑠, 𝑥);𝐶̃︀ → ∐︀𝐺 ⋃︀(︀𝑡⇑𝑥⌋︀𝐶̃︀
Op-Data

no weakly critical edges

∐︀𝐺 ⋃︀query(𝑠, 𝑟, 𝑥);𝐶̃︀ → ∐︀𝐺 ⋃︀(︀𝐴𝑛𝑠(𝐺,𝑠, 𝑟)⇑𝑥⌋︀𝐶̃︀
Op-Query

	Abstract
	1 Introduction
	2 Background: Scope Graphs
	3 Statix: Annotated, Restricted
	3.1 Statix background: syntax and semantics
	3.2 Annotations and restrictions

	4 Attribute Grammars
	4.1 Background
	4.2 Operational semantics for attribute evaluation

	5 Translating Statix to Attribute Grammars
	6 Scheduling AG equations and Statix constraints
	6.1 Corresponding AG and Statix evaluation traces
	6.2 Equivalent results

	7 Discussion
	8 Related Work
	9 Future Work and Conclusion
	References
	A Statix operational semantics

