
Building parallel programming language constructs
in the AbleC extensible C compiler framework

A PPoPP Tutorial

Travis Carlson and Eric Van Wyk

Department of Computer Science and Engineering

University of Minnesota

Minneapolis, MN, USA

travis.carlson@cs.umn.edu,evw@umn.edu

CCS Concepts • Software and its engineering → Ex-
tensible languages;Translatorwriting systems and com-
piler generators; • Computing methodologies → Par-
allel programming languages.

1 Introduction
In this tutorial participants learn how to build their own

parallel programming language features by developing them

as language extensions in the ableC [4] extensible C com-

piler framework. By implementing new parallel program-

ming abstractions as language extensions one can build on

an existing host language and thus avoid re-implementing

common language features such as the type checking and

code generation of arithmetic expressions and control flow

statements. Using ableC, one can build expressive language

features that fit seamlessly into the C11 host language.

A distinguishing characteristic of ableC is that the under-

lying tools can ensure that independently-developed exten-

sions can all be safely and automatically composed with the

host language. This allows programmers (that are not knowl-

edgeable about the techniques used to implement language

extensions) to pick and choose the collections of language

extensions that they would like to use with the assurance

that the tools will generate a working compiler for their

custom language. Certain composability constraints must be

satisfied by the language extensions to ensure this compos-

ability guarantee, but they still allow for expressive language

features to be specified.

In Section 2 we discuss a few sample ableC language

extensions; the tutorial focuses on how to build language

extensions of this type in ableC. These extensions add new

concrete syntax, static analyses, overloading of existing C

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

PPoPP ’19, February 16–20, 2019, Washington, DC, USA
© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6225-2/19/02.

https://doi.org/10.1145/3293883.3302574

operators, and code transformation and generation tech-

niques to the host C language. Section 3 discusses the ableC

framework and how language extensions are implemented.

Section 4 describes the tutorial goals and gives links to ableC,

sample extensions, and the online resources for the tutorial.

2 Motivation and Examples
The significant amount of diversity in parallel programming

is not always well-served by existing parallel programming

languages. Different computational problems are amenable

to different styles of parallelism and applicationsmay be com-

posed of sub-problems that are more amenable to different

styles of parallelism. Furthermore, experience and expertise

in writing parallel programs differs among programmers,

as does desired level of parallel performance. Programmers

seeking maximal performance on scientific computations

may be willing to put in more effort to improve performance

than those just seeking some benefit from the multiple cores

in their processor on a program that may run only briefly.

Programmers also simply have different personal preferences

in how their programs are written.

With all of these differences, there is no right set of lan-
guage abstractions and no right parallel programming lan-

guage for every situation. Depending on the problem, the

situation, and the programmer, different abstractions may

be preferred. In some cases, task-parallelism as found in

Cilk-5 [1] may be preferable to data-parallelism as found

in parallel implementations of map and reduce operations.
For communication between parallel tasks one may want

buffered channels as found in Go [2], or lattice variables

(called LVars) [8] as found in LVish [7]. In other cases, the

programmer-specified loop transformations that are found

in Halide [9] and deliver higher performance, but with

more programmer effort, may bemore suitable. Programmers

should be able to freely choose the language abstractions

that they prefer for their tasks at hand.

While programmers can choose different parallel program-

ming languages, this approach provides a rather course-

grained degree of choice. Languages such asCilk-5 aremono-
lithic in that they have a fixed set of abstractions limiting

programmers to one specific view on parallel programming.

https://doi.org/10.1145/3293883.3302574

PPoPP ’19, February 16–20, 2019, Washington, DC, USA Travis Carlson and Eric Van Wyk

One cannot, for example, use lattice variables for commu-

nicating between tasks when using Cilk. If a problem has

a component amenable to Cilk-style task parallelism and

another in which the programmer would like to use Halide

to explicitly control the parallel code that is generated, one

must use two separate languages, which can be somewhat

cumbersome.

Although a main thrust of our research has been to de-

velop the tools and techniques that support the composition

of independently-developed language extensions, we have

done so while still allowing quite expressive language fea-

tures to be developed as composable language extensions.

If language researchers could only introduce quite limited

forms of new syntax, static analysis, or code generation in

language extensions then the cost of composability would be

too high. We have thus implemented a number of extensions

for parallel programming, including features from the paral-

lel languages and techniques described above. The examples

described below demonstrate the kinds of composable lan-

guage features that can be developed in ableC. The tutorial

guides participants through the process of developing lan-

guage extensions similar in complexity to these.

Cilk, algebraic data types, and regular expressions: As
a first example, consider the extended C program in Fig-

ure 1 that comes from our previous work on ableC [4]. This

program uses three different extensions that provide (i) Cilk-
5 [1] style constructs for specifying parallel computations,

(ii) inductive/algebraic data types as found in many func-

tional languages, and (iii) regular expression literals and

matching operators. This program runs in parallel to count

the number of strings in a binary tree that match a regu-

lar expression. The first token in each extension-introduced

construct is underlined in the figures to help identify the

extensions.

On lines 3-7 is a declaration of a Tree datatype with Fork
and Leaf constructors; a fork node contains pointers to two

sub-trees and a string while a leaf node contains just a string.

In the count_matches function we see, on line 10, a use of

the pattern-matching match statement that matches the tree

t against one of three patterns to determine what branch of

the match to execute. These three patterns, on line 11, 23,

and 25, specify the cases in which the tree t is a fork node, a

leaf node whose string consists of positive digits, or a leaf

node that does not match the pattern above. In the fork case

on line 11 the components of the tree are identified as t1,
t2, and str and referenced in the associated code.

This program also uses constructs from an extension pro-

viding Cilk-5 style task-based parallelism. Lines 13 and 14

spawn new parallel tasks to count the number of matches

in the subtress t1 and t2 while the main thread checks the

string str on the current node. Line 19 is a Cilk sync com-

mand that waits for the spawned tasks to complete. These

extension constructs are translated to plain C code that uses

1. #include <stdio.h>
2.

3. typedef datatype Tree Tree;

4. datatype Tree {

5. Fork (Tree*, Tree*, const char*);
6. Leaf (const char*);
7. };
8.

9. cilk int count_matches (Tree *t) {
10. match (t) {
11. Fork(t1,t2,str) -> {
12. int res_t1, res_t2, res_str;
13. spawn res_t1 = count_matches(t1);

14. spawn res_t2 = count_matches(t2);

15. if (str =~ /[1-9]*/)
16. res_str = 1;
17. else
18. res_str = 0;
19. sync;

20. cilk return res_t1 + res_t2 +
21. res_str;
22. }
23. Leaf(/[1-9]*/) -> {
24. cilk return 1; }
25. _ -> { cilk return 0; }
26. } ;
27. }
28.

29. cilk int main (int argc, char **argv) {
30. int count;
31. Tree *t = initialize_tree();
32. spawn count = count_matches(t);

33. sync;

34. printf ("number of matches = %d\n", count);
35. cilk return 0;
36. }

Figure 1. An example ableC program using extensions that

provide Cilk-style parallel programming abstractions, al-

gebraic data types with extensible pattern matching, and

regular expressions.

the original MIT Cilk-5 runtime as the implementation the

work-stealing techniques [1].

The third extension adds regular expression literals and an

new infix matching operator, =~, to check if a string matches

a regular expression, as seen on line 15. This extension also

extends the algebraic data type extension to add an new form

of pattern; this regular expression pattern matches when, as

expected, a string matches the regular expression. This is

seen on line 23.

Building parallel programming language constructs in AbleC PPoPP ’19, February 16–20, 2019, Washington, DC, USA

This extension demonstrates a few different capabilities

of ableC: notably the mechanisms for defining new con-

crete syntax, static analysis of them (i.e. type checking), and
translation of the constructs down to plain C code.

Halide-style loop transformations: When writing code

where performance is a critical aspect, there are many op-

timizations and transformations that a compiler can con-

ceivably apply to generate highly efficient code. However,

compilers do not have the same insight into the problem as

the developer and do not always apply the set of transfor-

mations that result in the most efficient code. Halide [9] is

a system in which developers can write performance critical

code in a clear and easy to read manner and then explicitly

define the loop transformations that they want to be applied.

Figure 2 demonstrates aHalide-inspired ableC extension

used in a function to multiply matrices. This example comes

from the supplementary material of the ableC paper [4]. In

this function the transform construct consists of two parts,

first a loop-based computation, here for matrix multiply,

and second a sequence of loop transformations to apply.

These transformations split and tile the loops, parallelize

the outer loop, and vectorize an inner loop. The Halide

system, and our extension-based re-implementation of it,

allow a programmer to experiment with different types and

combinations of transformations without having to actually

write the transformed code.

Additional extensions: The ableC paper and supplemen-

tal material describe several other extensions providing lan-

guage features for writing and statically type checking SQL

queries, Go-style task and message-passing constructs, and

using lambda-expressions and closures.

A more recent extension developed in our group is a re-

implementation of much of Kjolstad’s tensor algebra com-

piler [6] (TACO) as an ableC extension. TACO and our ex-

tension allow one to specify which dimensions of a tensor

are to be stored in a dense or sparse manner, thus allow-

ing for space-efficient representations of large mostly-sparse

tensors. These systems generate efficient code to perform

general sparse tensor operations. For example, when i, j,
and k, have been declared as index variable, statements like

c[i, j] = a[i, k] * b[k, j];
are automatically translated into efficient implementations of

the operations, in this case a matrix multiplication of sparse

matrices. In this example, no new syntax is added by the ex-

tension. Instead the operator overloading features of ableC

are used. The overloaded assignment (=), multiplication (*),
and array access ([]) operators inspect the types of their
arguments to determine what abstract syntax to translate to.

In this case, it is abstract syntax for this extensions sparse

tensor operations. These, in turn, generate the same kind of

efficient code produced by TACO. That system is written as

a C++ library and relies on operator overloading for writing

computations like the one above. Since ableC also supports

1. void matmul (unsigned m, unsigned n, unsigned p,
2. float a[m][p], float b[p][n],
3. float c[m][n]) {
4. transform {
5. for (unsigned i : m, unsigned j : n) {
6. c[i][j] = 0;
7. for (unsigned k : p) {
8. c[i][j] += a[i][k] * b[k][j];
9. }
10. }
11. } by {
12. split i into (unsigned i_outer,
13. unsigned i_inner :
14. (m - 1) / NUM_THREADS + 1);
15. parallelize i_outer
16. into NUM_THREADS threads;
17. tile i_inner, j
18. into (TILE_DIM, TILE_DIM);
19. split k into
20. (unsigned k_outer
21. unsigned k_unroll : UNROLL_SIZE,
22. unsigned k_vector : VECTOR_SIZE);
23. unroll k_unroll;
24. vectorize k_vector;
25. }
26. }

Figure 2. An example program segment for matrix multi-

plication using a composable language extension providing

Halide-like separate specification and transformation of

iterative constructs.

the specification of new syntax it avoids a few issues with

C++ operator overloading to provide, in a few instances, a

bit more natural means of specifying tensor computations.

These examples illustrate some ableC capabilities for de-

veloping composable and expressive language extensions.

The tutorial leads participants through the process of devel-

oping language extensions of similar complexity.

3 AbleC, an extensible C specification
The ableC extensible C framework is a specification of C11

written using the Silver attribute grammar system [11] and

the Copper LR-parser and context-aware scanner genera-

tor [12]. Language extensions are written using the same

tools. From a specification to compose a set of extensions

with the host language, Silver carries out the composition

to effectively create a specification of the custom, extended

language. From this specification, concrete syntax specifica-

tions for the a scanner and parser are extracted and provided

to the Copper parser/scanner generator. The abstract syntax

PPoPP ’19, February 16–20, 2019, Washington, DC, USA Travis Carlson and Eric Van Wyk

and attribute grammar specifications define the static anal-

yses and code generation aspects of the host language and

the extensions. An attribute grammar evaluator is generated

and integrated into a implementation that performs many of

the steps in a traditional compiler. The scanner and parser

read an extended program, such as those in the figures above,

and construct an abstract syntax tree (AST) representation.

On this AST various static analysis are performed, the most

important being the type checking of the program. For ex-

ample, the algebraic data type extension will raise a type

error if a pattern does not match the type of the data it is to

be matched against. This allows type errors to be detected

on programmer written code. Overloaded operators, such

tensor multiply and array accesses above are translated to

the implementations as specified by the extension.

Extension language constructs also specify how they trans-

late down to plain C code. The ableC framework generates

a plain C program from these translation, which is given

to a traditional C compiler to create an executable program.

Many of these translations are straightforward; for exam-

ple the algebraic data type declarations translate into the

expected collection of C struct and union declarations. But
some translations are more complex. For example, A cilk
function is translated into two functions, a fast and slow

clone that make calls to the MIT Cilk-5 runtime. The ex-

tension performs the essentially the same translation as the

Cilk-to-C translator that was part of the Cilk-5 system, but

without the need to implement all the C-language features

since these are provided by the host language.

4 Goals and materials
The primary goal of this tutorial is to introduce participants

to the ableC framework and work through some example ex-

tension specifications to learn how to develop new language

extensions of interest to them. This will cover the underlying

tools, Silver and Copper, and how concrete syntax, abstract

syntax, static analyses, and code-generation are specified

using them. Part of this will cover the modular analyses that

Copper uses [10] to ensure that deterministic scanners and

parsers are generated from extension compositions. We also

discuss the modular analysis used by Silver to ensure that

composed attribute grammars are well-defined [3, 5].

The ableC specification, the underlying tools Silver and

Copper, and the example extensions discussed above and

used in the tutorial are all open-source and freely available

online at the URLs below:

• ableC is available at http://melt.cs.umn.edu/ableC,
archived at https://doi.org/10.13020/D6VQ25

• Silver is available at http://melt.cs.umn.edu/silver,
archived at https://doi.org/10.13020/D6QX07

• Example extensions can be found on GitHub at https:
//github.com/melt-umn/

• tutorial materials are all available online at http://melt.
cs.umn.edu/tutorials

Acknowledgments
This material is partially based upon work supported by the

National Science Foundation (NSF) under Grant No. 1628929.

Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the author and do not

necessarily reflect the views of the NSF. We also thank Ted

Kaminski, Lucas Kramer, and Aaron Councilman in their

work in developing ableC and some of the above extensions.

References
[1] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. 1998. The

implementation of the Cilk-5 multithreaded language. In Proceedings
of Programming Language Design and Implementation (PLDI). ACM,

New York, NY, USA, 212–223.

[2] Google. 2018. The Go Programming Language. (2018). https://golang.
org.

[3] Ted Kaminski. 2017. Reliably Composable Language Extensions. Ph.D.
Dissertation. University of Minnesota, Minneapolis, Minnesota, USA.

Available at http://hdl.handle.net/11299/188954.
[4] Ted Kaminski, Lucas Kramer, Travis Carlson, and Eric Van Wyk. 2017.

Reliable and Automatic Composition of Language Extensions to C:

The ableC Extensible Language Framework. Proceedings of the ACM on
Programming Languages 1, OOPSLA, Article 98 (Oct. 2017), 29 pages.

[5] Ted Kaminski and Eric Van Wyk. 2012. Modular well-definedness

analysis for attribute grammars. In Proceedings of the International
Conference on Software Language Engineering (SLE) (LNCS), Vol. 7745.
Springer, Berlin, Germany, 352–371.

[6] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and

Saman Amarasinghe. 2017. The Tensor Algebra Compiler. Proceedings
of the ACM on Programming Languages 1, OOPSLA, Article 77 (Oct.
2017), 29 pages.

[7] Lindsey Kuper, Aaron Todd, Sam Tobin-Hochstadt, and Ryan R. New-

ton. 2014. Taming the Parallel Effect Zoo: Extensible Deterministic

Parallelism with LVish. In Proceedings of the Conference on Program-
ming Language Design and Implementation (PLDI). ACM, New York,

NY, USA, 2–14.

[8] Lindsey Kuper, Aaron Turon, Neelakantan R. Krishnaswami, and

Ryan R. Newton. 2014. Freeze After Writing: Quasi-deterministic

Parallel Programming with LVars. In Proceedings of the Symposium
on Principles of Programming Languages (POPL). ACM, New York, NY,

USA, 257–270.

[9] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain

Paris, Frédo Durand, and Saman Amarasinghe. 2013. Halide: A Lan-

guage and Compiler for Optimizing Parallelism, Locality, and Recom-

putation in Image Processing Pipelines. In Proceedings of the Conference
on Programming Language Design and Implementation (PLDI). ACM,

New York, NY, USA, 519–530.

[10] August Schwerdfeger and Eric Van Wyk. 2009. Verifiable Composi-

tion of Deterministic Grammars. In Proceedings of the Conference on
Programming Language Design and Implementation (PLDI). ACM, New

York, NY, USA, 199–210.

[11] Eric Van Wyk, Derek Bodin, Jimin Gao, and Lijesh Krishnan. 2010.

Silver: an Extensible Attribute Grammar System. Science of Computer
Programming 75, 1–2 (January 2010), 39–54.

[12] Eric Van Wyk and August Schwerdfeger. 2007. Context-Aware Scan-

ning for Parsing Extensible Languages. In Proceedings of the Interna-
tional Conference on Generative Programming and Component Engi-
neering (GPCE). ACM, New York, NY, USA, 63–72.

http://melt.cs.umn.edu/ableC
https://doi.org/10.13020/D6VQ25
http://melt.cs.umn.edu/silver
https://doi.org/10.13020/D6QX07
https://github.com/melt-umn/
https://github.com/melt-umn/
http://melt.cs.umn.edu/tutorials
http://melt.cs.umn.edu/tutorials
https://golang.org
https://golang.org
http://hdl.handle.net/11299/188954

	1 Introduction
	2 Motivation and Examples
	3 AbleC, an extensible C specification
	4 Goals and materials
	Acknowledgments
	References

