A modular specification of Oberon0 using the Silver
attribute grammar system

Ted Kaminski and Eric Van Wyk

Department of Computer Science and Engineering
University of Minnesota, Minneapolis, USA

Abstract

This paper describes an implementation of Oberon0 using the Silver at-
tribute grammar system for the Tool Challenge at the 2011 International
Workshop on Language Descriptions, Tools, and Applications. Silver was
developed to study how independently-developed language extension speci-
fications can be imported into a host language specification to define a new
custom extended language. Thus it contains many features useful in modu-
lar language specification, such as forwarding, higher-order attributes, refer-
ence/remote attributes, and a simplified form of collection attributes. These
are discussed in the context of the Oberon0 specification presented here.

Keywords: attribute grammars, extensible languages, language
composition, Oberon

1. Introduction

In 2011, the International Workshop on Language Descriptions, Tools,
and Applications (LDTA’11) held a Tool Challenge that invited developers
and users of language processing tools, such as parser generators, attribute
grammars, and term rewriting systems, to tackle a common problem in order
to illustrate the commonalities and differences between various tools. The
task was to implement a translator for Oberon0, a subset of Oberon used as
an example language in Wirth’s compiler construction textbook [1].

Since modular language design was a frequent theme of papers published
at LDTA, the Oberon0 language was to be implemented as a sequence of
language layers; starting with basic imperative constructs then adding new
control flow constructs (for-loops and switch statements), procedures, and

Preprint submitted to Science of Computer Programming December 7, 2017

finally arrays and records. The tasks included parsing, pretty printing, name
analysis, type checking, “de-sugaring” the new control flow constructs, lift-
ing nested procedures to the top-level, and finally translating to C. These
language levels and tasks are described in more detail in the preface [2] to
the special issue in which this paper appears and later in this paper.

This paper describes an implementation of Oberon(using Silver [3]. Sil-
ver is both a (meta) language for language specifications, as well as a tool
that analyzes specifications and translates them into a Java-based implemen-
tation. A Silver module, called a grammar, can define the concrete syntax,
abstract syntax (if one is used), the semantic analysis, and translation of a
language or a language extension. The specification of lexical and concrete
syntax of language constructs is based on context free grammars and regular
expressions that are translated and passed to Copper, an integrated parser
and context-aware scanner generator [4] coupled to Silver. Semantic anal-
ysis and translation tasks are specified as an attribute grammar and Silver
supports many modern attribute grammar features, including higher-order
attributes [5], reference attributes [6] (also called remote attributes [7]), and
a simplified form of collection attributes [7]. Silver introduced forwarding, a
mechanism that is useful for specifying composable language extensions, into
an attribute grammar setting [8].

Silver also has many features found in modern functional programming
languages. Silver is statically and strongly typed; its type system supports
parametric polymorphism (as found in ML or Haskell) and a limited form of
type inference. It also has higher-order functions and polymorphic lists, so
many idioms from functional programming can be easily expressed. Many
attribute grammar systems, including CoCoCo [9], JastAdd [10], Kiama [11,
12], and Silver, use a demand-driven mechanism similar to lazy evaluation to
schedule, at attribute evaluation time, the evaluation of attribute equations.
Both CoCoCo (an embedded DSL in Haskell) and Silver go a step further and
also use lazy evaluation to evaluate the right hand side of attribute equations.
It also has a module system and supports separate compilation. Silver can
be seen as a safe, polymorphic, higher-order, lazy functional language with
support for attribute evaluation [13].

Silver and Copper were developed to investigate a class of extensible lan-
guages that meet several criteria. First, extensions should be able to add
new language constructs and new semantic analyses over them. In Silver,
this amounts to supporting grammars (extensions) that add new nontermi-
nals, new productions, and new attribute equations to those in the “host”

language. Second, when extensions are composed with the host language,
this should not require any modifications or additions to the host or exten-
sion specifications. These two criteria are commonly referred to as the ex-
pression problem.! Third, extensions may be developed independently [14].
Fourth, they can be composed automatically. Thus no additional specifica-
tions (“glue code”) need be written to define the composition. As we will
see later, forwarding provides a solution to this extension of the expression
problem.

This composition of the host language and extension grammars is per-
formed by Silver and Copper. Grammar composition is the straightforward
set union of the different types of language specifications (sets of grammar
symbols, productions, attribute equations, etc.), but the resulting specifica-
tion may contain lexical ambiguities, define a grammar that is not LALR(1)
(as required by Copper), or the attribute grammar may be missing required
equations. To avoid this problem, Silver and Copper perform modular analy-
ses on an extension and the host language? it extends that restrict extensions
to prevent these problems from occurring. Silver performs a modular well-
definedness analysis [15] that ensures that the composed attribute grammar
is well-defined, meaning all attributes that may be evaluated have defining
equations.® Copper has a modular determinism analysis [16] that ensures lex-
ical ambiguities do not occur and that the composed grammar is LALR(1),
something that only becomes practical when using a context-aware scanner as
found in Copper. Together, these analyses let independent parties develop
general-purpose or domain-specific language extensions that programmers,
with no knowledge of the underlying specifications, can direct the tools to
compose in order to create a unique language with the features they de-
sire. This composition is guaranteed to “just work;” it results in attribute
grammars that are complete (no missing equations) and scanner and parser
specifications that have no ambiguities and can be parsed deterministically.

We have used Silver and Copper to develop a number of extensible lan-

'http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt

2This host language may itself be an extended language created from a number of
extensions. Extensions can extend other extensions directly. In both cases the analyses
work the same way.

3When forwarding is used, as described in Section 4, not all attributes will be evaluated
and thus this analysis does not simply check that equations exists for all attributes on all
non-terminal symbols. Please see our previous papers for the details [8, 15].

guages host languages. These include the programming languages Java
1.4 [17] and more recently ANSI C (C11 standard) and modeling languages
such as Promela [18], the specification language of the SPIN model checker,
and Lustre [19], an asynchronous language used in safety critical systems. Sil-
ver? (implemented as a Silver specification) and Copper® are both distributed
in source form under the Lesser GNU Public License (LGPL).

We encourage motivated readers to download the Silver specification of
Oberon0°® and explore the specifications while reading the examples in the
paper as they have pointers to specific files.

2. The organization of the OberonO specification in Silver

To demonstrate Silver’s support for highly modular language design, the
Oberon0 specification is spread across many different Silver grammars. A
grammar corresponds to a file system directory and is composed of the spec-
ifications in all Silver files (ending with a .sv extension) in that directory.
(The scope of the specifications in one file includes all other files in that gram-
mar.) We follow the example of package naming in Java and base grammar
names (and directories) on an organization’s Internet domain name to ensure
that they are unique.

Named components (e.g. productions, attributes, non-terminals) have a
fully-qualified name created from the unique grammar name and the name
defined in the grammar. Thus undetected name-clashes are not possible
in Silver. Grammars can import other grammars, optionally qualifying the
imported names to avoid name clashes when two values with the same (not
fully-qualified) name are to be used. Grammars can also export specifications
from other grammars to create grammar specifications that are composed of
multiple grammars. Thus a language designer has a high degree of flexibility
in writing modular language specifications.

The language levels, named L1 — L4, and tasks, named T1 — T5, of the
Tool Challenge are described in Table 1. Each language level includes the
features from the levels below it. Task T3 depends on T2 and T5 depends
on T4b.

‘http://melt.cs.umn.edu/silver

Shttp://melt.cs.umn.edu/copper

Shttp://melt.cs.umn.edu/oberon0. A permanent archive of the specifications can
also be found at http://dx.doi.org/10.13020/D6HO1F.

L1 | variable, constant, and type declarations, assignment statements,
while-loops, if-statements, expressions with arithmetic, logical, and
relational operators

L2 | new control flow statements: for-loops and case statements

L3 | procedures with by-value and by-reference parameters

L4 | new data structures: arrays and records

T1 | scanning, parsing, and pretty-printing

T2 | name analysis, reporting undeclared variables
T3 | type checking, reporting type errors

T4 | source to source transformation

T4a ‘ translating L2 features to L1 features
T4b \ lifting nested procedures to the top level
T5 | translation to C, after T4b

Table 1: Language level and task descriptions.

The Silver Oberon0 specifications are organized across 5 top-level directo-
ries. The core grammar (with full name edu:umn:cs:melt:0beron0:core)
defines language L1 and tasks T1, T2, and T3. Its component sub-grammars
further separate L1 into its concrete syntax (T1), abstract syntax (which
defines T2), and type checking (T3). The constructs grammar has com-
ponent grammars that define, respectively, control flow features (L2), data
structures (L3) and procedures (L4). The tasks grammar and its compo-
nents define the procedure-lifting transformation task (T4b) and the C code
generation task (Th) for the various language levels.

The grammars in the components directory compose and export the rel-
evant grammars from core, constructs, and tasks to define grammars for
each language (L1 to L4) and each task (T1 to T5) and, for language com-
ponents, define the appropriate parser. For example, Figure 1 shows the
grammar defining language L4; it exports the appropriate grammars and
also builds a parser from the concrete syntax specifications in them.

Finally, an artifacts directory contains grammars for the specific arti-
facts made up of various language levels and tasks as specified by the Tool
Challenge. For example, as described in the preface to this special issue,
artifact Al is language L2 with tasks T1 and T2; artifact A2a adds L3 to
A1l while A2b adds task T3 to Al. Artifact A3 is L3 and T3; artifact A4 is

grammar edu:umn:cs:melt:0beron0O:components:L4;

exports edu:umn:cs:melt:0beron0:core;

exports edu:umn:cs:melt:0beron0:constructs:controlFlow;
exports edu:umn:cs:melt:0beron0:constructs:procedures;
exports edu:umn:cs:melt:0beron0:constructs:dataStructures;

parser parse::Module_c {
edu:umn:cs:melt:0beron0:core;
edu:umn:cs:melt:0beron0:constructs:controlFlow;
edu:umn:cs:melt:0beron0O:constructs:procedures;
edu:umn:cs:melt:0beron0:constructs:dataStructures; }

Figure 1: Silver specification of the L4 component (file Language.sv).

grammar edu:umn:cs:melt:0OberonO:artifacts:A4;

imports edu:umn:cs:melt:0beronO:components:L4 as L4;
imports edu:umn:cs:melt:0beron0:components:T3;

imports edu:umn:cs:melt:0beronO:components:T5;

imports edu:umn:cs:melt:0beronO:core:driver only driver;

function main IOVal<Integer> ::= args::[String] mainIO::I0
{ return driver(args, L4:parse, mainI0); }

Figure 2: Silver specification of the artifact A4 (file Artifact.sv).

| Lang. / Task || T1 | T2 | T3 | T4a | T4b [T5 || Total |

L1 570 [548 [268 | NA | 349 [263]| 1998
L2 13812539 | 34 [0 [0 [336
L3 178 [166 [121 | NA [184 | 94 | 743
L4 82 [27 [99 [NA | 28 | 30 || 266
Total | 968 | 866 | 527 | 34 | 561 [387 | 3343 |

Table 2: Lines of specifications for the tasks for different language levels.

L4 with all tasks. Silver imports and exports statements manage grammar
composition. Figure 2 shows the specification of artifact A4; it imports lan-
guage L4 and tasks T3 and T5. Since task T1 and T2 specifications are in
the same grammars as the language level specifications they need not be im-
ported here. Similarly, task T4 specifications need not be imported directly
since T5 depends on them. The specification also imports a driver function
that controls the execution of the translator using the parser defined in L4.7
As can be seen, it is easy to create new artifacts with different combina-
tions of language levels and tasks - it is essentially a matter of importing the
appropriate component grammars.

Table 2 provides the number of lines used to specify the different tasks
for different language levels. Note that these counts do not include the
components and artifacts grammars as they primarily import and export
statements that repackage the specifications in the core, constructs, and
tasks grammars. Note, 285 lines contain a single left or right curly brace.

3. Scanning and parsing

Lexical and concrete syntax specifications in a grammar are processed by
Copper, our integrated LALR(1) parser and contert-aware scanner generator.
Context-aware scanners [4] only scan for (and thus only return) terminals
that are valid for the current context. In the case of LR parsers this context
is the current LR parse state and the valid terminals are the ones that have a
shift, reduce, or accept, but not error, as their parse table entry for the current
state. Thus the principle of disambiguation by longest match is subordinate
to the principle of disambiguation by context.

This type of scanning allows terminals that appear in different parsing
contexts to have overlapping regular expressions. This is useful when parsing
and scanning extensible languages in which different extensions may have
terminals (e.g. new keywords) with overlapping regular expressions but they
appear in different parsing contexts. More generally, terminal symbols need
not be overloaded; instead different terminal symbols can be specified with
overlapping regular expressions. This means that they are not overloaded in
the parser and thus parse table conflicts are less likely to occur [4]. Since the
concrete syntax of Oberon0 is so simple it is easily LALR(1) and there is no

"The mainI0 is an artifact of Silver’s rather archaic mechanism to manage side-effects
in a pure lazy functional language.

need for context aware scanning. In our implementation no terminals with
overlapping regular expressions are disambiguated by context.

Sample specifications - lexical syntax. Specifications for lexical syntax are
familiar and consist primarily of terminal symbol declarations, which name
the terminal symbol and provide the defining regular expression. In the Silver
specification for the concrete syntax of L18, the Id terminal specifies variable
names:

terminal Id /[A-Za-z] [A-Za-z0-9]x*/ ;

Terminals with regular expressions that match only one string, such as for
keywords and operators, can specified as a single-quoted string. Productions
in the concrete syntax can then use these quoted strings instead of the often
less convenient terminal name. This can be seen for the assignment and addi-
tion operators below; the addition operator also shows the use of traditional
precedence and associativity specifications:

terminal Assignt ’:=’ ;
terminal Plus_t ’+’ precedence = 11, association = left;

There are two types of lexical disambiguation in Copper. The first speci-
fies that a terminal t;, for example a keyword, takes precedence over another
to, for example an identifier, in all contexts in which ¢, is valid, even those
in which ¢; is not valid. This is how keyword reservation can be specified.
The second specifies a function over a set of terminals that chooses the one
to return when a lexical ambiguity over those terminals occurs. This is used
in a specification of ANSI C to disambiguate C variables from type names by
keeping a parse-time list of type names defined by a typedef. The first form
of disambiguation would be inappropriate for this because it would prefer
the same terminal, either variable or type name, in all cases.

White-space and comment terminals are indicated by the ignore modifier
that indicates a terminal is not to be passed on to the parser.

Sample specifications - context free concrete syntax. Specifications for con-
crete context free syntax also have a familiar structure; productions are writ-
ten in BNF style and symbols may be preceded by a name which is used in

8Grammar edu:umn: cs:melt:0beronO:core:concreteSyntax, file Terminals.sv.

grammar edu:umn:cs:melt:0beron0O:constructs:controlFlow:concreteSyntax;

concrete productions s::Stmt_c
| ’FOR’> id::Name_c ’:=’ lower::Expr_c ’TO’ upper: :Expr_c
’DO’ body::Stmts_c ’END’
{ s.ast = forStmt(id.ast, lower.ast, upper.ast, body.ast); }

| ’FOR’> id::Name_c ’:=’ lower::Expr_c ’TO’ upper: :Expr_c
’BY’ step::Expr_c D0’ body::Stmts_c ’END’
{ s.ast = forStmtBy(id.ast, lower.ast, upper.ast, step.ast,
body.ast); }

synthesized attribute ast<a> :: a ;
attribute ast<Stmt> occurs on Stmt_c ;
attribute ast<Expr> occurs on Expr_c ;

Figure 3: Concrete syntax specifications for the for-loop (file ForLoop.sv).

assigning and accessing attribute values during attribute evaluation. Figure 3
shows the specification of the two for-loop constructs added in language L2.
Since they are labeled as concrete they are used by Copper to generate a
parser for the language. The attribute definitions, in curly braces, and the
declarations for the attribute ast are discussed below.

4. Attribute Grammars, Attribute Evaluation

In attribute grammars [20], nonterminal symbols are associated with
named values called attributes; nonterminal nodes in a syntax tree are dec-
orated with these attributes. These attributes specify some semantic infor-
mation such as a collection of semantic errors or the collection of in-scope
variables. Equations associated with productions define the attribute values.
Synthesized attributes propagate information up the syntax tree, and inher-
ited attributes propagate contextual information down the tree. The types of
attribute values in Silver include primitive values (e.g integers and strings),
lists, syntax trees (called higher-order attributes [5]), or references to remote
tree nodes (called reference or remote attributes [6, 7]).

Figure 3 shows the concrete productions for the for-loop and the attribute
equations (written between curly braces). Nonterminal and terminal symbols

are named in Silver productions, and attributes are referenced in equations
using these names. The synthesized higher-order attribute ast is defined to
be the abstract syntax tree for the construct that the attribute decorates.
(Note that attributes can be defined on both concrete and abstract syntax.)
For the first production, the equation defines the ast attribute of the left
hand side nonterminal s using an abstract production (forStmt) and the
ast attribute of its nonterminal children on the right hand side. Since punc-
tuation, for example :=, and keywords do not appear in the AST, they are
specified here using only the constant lexeme in single quotes that was given
in the definition of that terminal symbol.

Silver supports parametric polymorphism as found in languages such as
ML. The attribute ast is a polymorphic attribute that takes a type pa-
rameter named a (written between angle brackets). This specifies that ast
has the type Va. a. This parametric type is instantiated by an occurs on
declaration; on concrete nonterminals (Expr_c or Stmt_c) this attribute has
corresponding type in the abstract syntax (Expr or Stmt).

Productions defining the abstract syntax, as shown in Figure 4, differ
from concrete production in three ways: the abstract modifier is used, they
have names unlike the anonymous productions shown in Figure 3, and they
are not used to generate a parser. Otherwise there is no distinction between
the two in Silver. Thus, one can define all the semantics of the language on
the concrete syntax tree if desired. For Oberon0 we chose to use a separate
abstract syntax, primarily for demonstration purposes.

The abstract production forStmtBy in Figure 4 provides equations defin-
ing (among others) the synthesized attributes pp, for pretty-printing the
code, and errors, for collecting error messages. It also defines the inherited
attribute env on the child nodes for propagating an environment (symbol ta-
ble) down the syntax tree. This production uses forwarding to translate the
for-loop to the semantically equivalent construct using a while-loop. Each of
these is explained more fully in the following sections that describe the Silver
implementation of the various language tasks for which these attributes and
forwarding are used.

The pp attribute could have type String since these are easily con-
catenated to generate the pretty-printed version of the original program.
However managing indentation and not generating too-long lines can be
rather cumbersome. Thus Silver, like Kiama [11, 12] and Rascal [21], uses a
pretty-printing library that handles such problems. In Silver we have imple-
mented Swierstra and Chitil’s [22] pretty-printer combinator library in which

10

grammar edu:umn:cs:melt:0beron0O:constructs:controlFlow:abstractSyntax ;
abstract production forStmtBy

s::5tmt ::= id::Name low::Expr up::Expr step::Expr body::Stmt
{ s.pp = concat([
text("FOR "), id.pp, text(" := "), lower.pp,

text(" TO "), upper.pp, text(" DO"),
nestlines(2, body.pp),
text ("DONE") 1);

low.env = s.env; up.env = S.env,

s.errors := low.errors ++ up.errors ++ step.errors ++
body.errors ++
case lookupDecl (id.name, s.env) of
| nothing() -> [err(s.location, id.name ++ " not declared")]
| just(decl) -> [1]
end;

forwards to seq(
assign(idAccess(id), low),
while (compareOperator (1Expr (idAccess(id)), up),
seq(body,
assign(idAccess(id), add(1Expr(idAccess(id)), step)))
))

Figure 4: Abstract syntax and attribute specifications for the for-loop (file ForLoop.sv).

Document values are created (for example by the text function), combined
(for example by the concat function), or appropriately indented. In Figure 4
the nestlines function creates a Document which indents, in this case, the
lines of the for-loop body by two spaces. Additional features allow one to
specify optional line breaks and other structure-defining features. When the
final document is converted to a plain string, a maximum line length size is
specified and a rather sophisticated analysis generates the string under these
constraints. Libraries such as these make it much easier to generate nice
looking textual representations of programs with a small amount of work.

11

5. Name analysis

Name analysis in the Silver implementation of Oberon0 proceeds in a
standard way: the specifications? define an environment (symbol table) that
is used to look up names, retrieve their declarations and included types, and
report any re-declarations or undefined symbols; various helper functions
are provided to assist in this. The environment is passed down the syntax
tree as an inherited attribute env. This can be seen in the equations of the
form low.env = s.env; in Figure 4. The env attribute is defined as an
“autocopy” inherited attribute and thus if there is no equation defining env
on a child then a copy equation such as those shown here are generated.

The function lookupDecl, with the declaration

function lookupDecl Maybe<Decorated Decl> ::= n::String e::Env,

takes a name to look up and an environment and returns either a nothing()
value, indicating that the name was not found, or a just(d) value, in which
d is a reference to the declaration (Decl) node in the tree where the name n
was declared. The Maybe type is similar to the Maybe type in Haskell and the
option type in ML. In Silver, this is a parameterized nonterminal type that
has two abstract productions: the nullary nothing production and unary
just production.

A use of this is seen in the definition of the errors attribute for s in
Figure 4. (As discussed below, since errors is a collection attribute the
:= symbol is used instead of the = symbol.) The type of errors is a list
of messages, [Message], and is defined here by combining the list of errors
from the child nodes (using the list append operator ++) and checking if the
name id is defined. The case-expression matches on the result from a call
to lookupDecl and creates the appropriate list of error messages. A result
of nothing() indicates that the name was not declared and thus an error
message is created. A result of just(dcl) indicates that dcl is a reference
to the node that declared the name.

Decorated types. The type Decorated Decl is a reference [6] or remote [7]
attribute and can be informally understood as a pointer or reference to a
Decl node in the syntax tree. Whereas a higher-order attribute holds undec-
orated syntax tree values (essentially just terms in the language), a reference

9Grammar edu:umn: cs:melt:0beron0:core:abstractSyntax, file Env.sv.

12

attribute is a reference to an existing, attributed, node in the tree. Attributes
occurring on a Decl node can be retrieved via the reference attribute of type
Decorated Decl, but they cannot be defined via the reference. Both Jas-
tAdd’s reference attributes [6] and Boyland’s remote attributes [7] support
both accessing and defining collection attributes via a reference. Thus a pro-
duction that uses an Oberon0 name calls lookupDecl to determine if the
name is declared, and if so it can use the reference to access, for example,
the type attribute on the Decl.

The environment. Oberon0 nests scopes in a standard manner; declarations
in a scope hide declarations of the same name in any lexically enclosing scope.
The type of attribute env is the non-terminal type Env. This higher-order
attribute is a simple container that holds an attribute named bindings of
type [TreeMap<String (Decorated Decl)>]. The bindings of names to
declaration nodes in a single scope is represented by a map (TreeMap'® is a
red-black tree map) and the maps for all scopes are kept in a list, ordered
from inner-most to outer-most. Note that type parameters, e.g String and
(Decorated Decl) used to instantiate the polymorphic TreeMap, are sep-
arated by spaces and thus compound type expressions need to be written
inside parenthesis. Here, the map (for a single scope) is from strings to
decorated Decl nodes.

Specifications in a functional style. The function lookupDecl, see above, is
used to retrieve the reference to a variable’s declaration, if it exists, given
the variables name and environment. The body of that function is

return foldr(orElse, nothing(), lookupInScopes(s, e.bindings));

Using lazy evaluation, this folds up the results of looking for the name s in all
the scopes in the environment using a base-value of nothing and combining
results with orElse to return the first result from lookupInScopes that is not
anothing(). Because Silver uses lazy evaluation this is efficient: the function
will only actually do the lookup as far as is needed in the scope list. This
style of programming is quite familiar to functional programmers using lazy
languages and also demonstrates the usefulness of parametric polymorphism
and higher-order functions in Silver.

0Grammar silver:util:treemap, file TreeMap.sv, in the Silver distribution.

13

The function lookupInScopes, where the type parameter a will be in-
stantiated as Decorated Decl is shown below:

function lookupInScopes
[Maybe<a>] ::= s::String ss::[TreeMap<String a>]
{return map(adapt, map(treeLookup(s,_), ss)); }

This function uses two applications of a traditional polymorphic map function.
The treeLookup function takes a string and a tree-map and returns a list of
all values (declarations) associated with the string in the tree-map. Mapping
this function over the list of tree-maps ss returns a list of lists of declarations.
The adapt function converts a list of values to a nothing () value if the list is
empty or a just value containing the first element of the list. Thus the map
using adapt returns a list of Maybe<Decorated Decl> values. Silver supports
partial application of functions and that is used here where treeLookup is
given only its first argument. The second is not given, as indicated by the
underscore. The result of the partial application is a specialized lookup
function for the name s that takes a tree as its only input. Again, lazy
evaluation makes this efficient.

6. Type Checking

Specifications for type checking are spread across various grammars in the
Silver Oberon(specification and show how a new semantic analysis can be
added to language constructs defined in other grammars. Silver’s composition
model allow a grammar to declare new attributes, indicate that they occur on
nonterminals declared in another (imported) grammar, and define equations
for these new attributes for existing productions in imported grammars.

The grammars that implement type checking, including the grammar
core:typechecking!!, define a new synthesized attribute type that occurs
on both Decl and Expr. On a declaration, this attribute is consulted via
the reference attribute returned from lookupDecl to determine the type of
a variable. On an expression, this attribute is computed to indicate its type.
The type of the type attribute is TypeRep, a representation of types deter-
mined after type names have been resolved. (Alternatively, we could have

'We will omit the grammar prefix edu:umn:cs:melt:0Oberon0 to keep names short.

14

chosen type to have the type of Decorated TypeExpr; type expression con-
structs in declarations are represented by the type TypeExpr in the syntax
tree.)

Aspect productions and collection attributes. We need to provide equations
defining the type attribute for expressions (productions with Expr on their
left hand side) and equations to report additional typing errors beyond what
are reported when only name analysis is performed. Many of these produc-
tions are defined in the core:abstractsyntax grammar. Aspect productions
specify new attribute equations for productions defined elsewhere, typically
in other grammars. In this case aspect productions in core:typechecking
associate attribute equations for the type attribute with the expression pro-
ductions in core:abstractsyntax.

Figure 5 shows an aspect production for the production intConst that de-
fines the type attribute on the production for integer constants to be a repre-
sentation of the type integer. This uses the nullary production integerType
with TypeRep on its left hand side. Similar aspects for other expression
productions are defined in the core:typechecking grammar.

This example does not provide a complete picture of composition of lan-
guage specifications in Silver and it does not provide a complete solution
to the type checking problem. While we do not need to report any type
checking error messages on the intConst production we certainly need to on
others. Collection attributes in Silver allow aspect productions to add new
error messages to the existing errors attribute defined in another grammar.
Collection attributes are ordinary attributes that come with a composition
operator that is used to combine all contributions to a collection attribute
specified in different aspects for a production. For errors, this operator is
the list append (++) operator as specified in the with clause of its declara-

tion!2:

synthesized attribute errors :: [Message] with ++;

In Figure 4 the initial or base value of errors for a for-loop is specified
using the := operator, instead of the regular = operator. Besides collecting
errors from the child nodes, the indexing variable is looked-up in the envi-
ronment to ensure that it is declared. In Figure 6 additional error messages

12Grammar silver:langutil, file Attributes.sv, in the Silver distribution.

15

grammar edu:umn:cs:melt:0beron0O:core:typeChecking;
attribute type occurs on Expr ;

aspect production intConst e::Expr ::= n::Integer
{ e.type = integerType();

Figure 5: Aspect production to type integer constants (file Expr.sv).

are contributed to the list of errors by definitions using the <- operator.
These are added in an aspect production. Here, the indexing variable is
looked-up in the environment again and if it is found and its type is not
the integer type (as determined by the call to check) an additional error
message is generated. In general, the final value of the collection attribute is
equivalent to the expression foldr (compositionOperator, baseDefinition
[contributions 1).

In Silver contributions to a collection attribute can only be made in a
production or in aspect productions for it, not by following a reference or
remote attribute which is supported by the type of collection attribute de-
scribed by Boyland [7] and used in JastAdd. While the collection attributes
in Silver are less expressive, this limitation simplifies that attribute evalua-
tion algorithm and avoids the more complex algorithms that are otherwise
required [23].

Collection attributes allow a language specification to provide specific
ways in which language extensions can contribute to existing attributes. This
is quite useful. In the case of errors the type checking extension can use the
existing error-reporting facilities of the core language and does not need to
define a new attributes, say typeErrors, to collect the typing error messages.

7. Source-to-source transformation

The effectiveness of forwarding [8] is illustrated in the specifications of the
Challenge task (T2) that adds a for-loop and case-statement to the initial
language, the code generation task (T5), and some additional simple syntax
desugaring. Using forwarding, a production can create, at attribute evalua-
tion time, a new syntax tree called the “forwards-to” tree. The original tree,
the so-called “forwarding tree,” automatically forwards queries for attributes
for which it does not have a defining equation to the forwards-to tree. The
forwards-to tree is automatically provided with the same set of inherited at-
tribute values as the forwarding tree. In this way, forwarding can be used

16

grammar edu:umn:cs:melt:0beron0O:constructs:controlFlow:typeChecking;

aspect production forStmtBy
s::5tmt ::= id::Name low::Expr up::Expr step::Expr body::Stmt
{ s.errors <-
case lookupValue(id.name, s.env) of
| nothing() -> []
| just(dcl) -> if check(dcl.type, integerType()) then []
else [err(s.location, "... wrong type...") 1]
end; 1}

Figure 6: Aspect production for type checking a for-loop (file ForLoop.sv).

to provide default values to synthesized attributes. Another way to under-
stand forwarding is that the forwards-to tree is simply a local higher-order
(sometimes called non-terminal) attribute for which attribute equations are
automatically generated that copy values from the forwarded-to tree to the
node on which the forwarded-to tree was defined (the forwarding tree). The
following examples show uses of forwarding for these tasks.

7.1. Desugaring

The specification of the for-loop production forStmtBy for task T2 in
Figure 4 has a forwards to clause that defines this production’s forwards-
to tree as the expected sequence of an assignment statement and while-loop
that the for-loop is translated to. This production and its aspect production
in Figure 6 define errors so that messages are in terms of the constructs
that the programmer wrote, not those that they translate to.

Note that there are no equations that define the cTrans attribute, the
translation of the decorated construct to C. Instead the value for cTrans
is defined by forwarding. When a for-loop tree is queried for this attribute
value, it simply forwards that query to the forwards-to tree. Thus, the C
translation of a for-loop is the C translation of the assignment/while-loop
that it forwards to. A similar process is used for the case-statement. This is
why the entries for L2/T4b and L2/T5 in Table 2 are both 0 lines of code.

Without forwarding or some other similar mechanism one must define
all attributes for these simple control flow extensions; this can get tedious,
even if they are simple copy equations. Forwarding is similar to traditional
macros in that semantic analysis takes places on the forwarded-to tree /

17

expanded code. But with simple macros one cannot define any attributes
and all semantic analysis is performed on the expanded (desugared) code.
This is even less appealing since now extension-specific error checking is not
possible. For example, one could not report an error that, say, indicates that
only integer variables are allowed for indexing in for-loops since the semantic
analysis takes place on the translated-to assignment /while-loop combination.

In addition to these T2 constructs, there are many language features that
are simple syntactic sugar. The host language we have defined for Oberon(
has one example: VAR declarations can list multiple identifiers at once, with
just one type. That is, both VAR x,y : INTEGER and VAR x : INTEGER, y
: INTEGER have the same meaning. In the Silver implementation, the former
declaration simply forwards to a sequence of the latter.!3

7.2. Transformations to enable code generation

The procedure-lifting transformation (T4b), in the tasks:1ifting gram-
mar, is accomplished in Silver using higher-order attributes to create the
“fattened” Oberon(0 program in which all procedures are lifted to the top-
level, as required by the target language C. We've implemented Johnsson’s
lambda-lifting transformation [24] to perform this task. It requires first re-
naming variables so that all are unique; it also solves a set of recursive equa-
tions used to compute the free-variables in recursive procedures that must
now be passed in as arguments. Circular attributes could be used to compute
the solutions to these equations, but since Silver lacks these the equations
are passed up to the top of the AST where they are solved before the results
are passed back down to where they can be used.

8. Code generation

The code generation process, in the tasks:codegenC grammar, is straight-
forward since the attributes for this are evaluated on the flattened version of
the program generated using the lambda-lifting transformation. On the flat-
tened tree all variable names are unique and all procedures have been lifted
up to the top level. It is possible that the Oberon0 program has variables
with the same name as C keywords. This problem is handled by using the
renaming process in the lambda-lifting transformation. That process keeps

13Grammar edu:umn:cs:melt:0beron0:core:abstractSyntax, Declarations.sv.

18

track of all names used in the program to detect variables which must be
renamed. We initialize the collection of variable names to be all the C key-
words, thus causing any Oberon(variables with these names to be renamed.
Thus the generation of C code boils down to little more than using a synthe-
sized attribute of type String to un-parse the flattened Oberon0 AST using
the concrete syntax of C.

9. Observations

The Oberon0 specification highlights some of the strengths and weak-
nesses of Silver. The module system and use of forwarding allows one to
develop languages in a highly modular manner. On the other-hand, Silver is
missing some helpful features such as a means for specifying abstract trees
using concrete syntax and an easier-to-use mechanism for 1/0.

Scanning and parsing. The simple concrete syntax of Oberon0 easily fits into
the LALR(1) class and does not require the advantages of context-aware
scanning. The only limitation in Copper exposed by Oberon0 is its inability
to handle nested block comments since regular expression matching is used
to match tokens. This gives rise to the only test failure in the Tool Challenge
test suite.

Forwarding. Like many language specification techniques, forwarding lets
one build up a language in layers, for example, the for-loop in L2 is built
on top of the core L1 language. Forwarding allows us to avoid defining the
semantics (attributes) for some new constructs that can be seen as syntactic
sugar for those already existing in the language. This is seen in the fact that
the for-loop gets it lifted-transformation semantics (T4b) and C translation
(T5) from the L1 while-loop construct that it forwards/translates to. This
is why there is a 0 in the L2/T4b and L2/T5 boxes in Table 2. But, it also
allows us to define attributes for some semantics, for example type checking,
when we want to do more than simply treat the new constructs as macros
that translate down to other constructs without any semantic analysis. In
this case we provide definitions for the type checking attributes so that better
error messages can be provided to the programmer. This allows the language
developer to build the language up in layers without having to treat non-
core language features as simple macros or implement all of their semantics
explicitly. Unlike many language specification techniques, forwarding does

19

not lock the language engineer into defining either all or none of the semantics
of a new language feature.

Modularity. We were also pleased that we could specify the different artifacts
of the challenge in such a modular manner. The composition model of Silver
is quite simple as it is just piece-wise set union of the grammar specifications:
grammars are sets of productions, productions (concrete, abstract, and as-
pect) have sets of attribute definitions, and collection attributes are defined
by sets of definitions spread across different grammars. This allows for the
rather modular specifications as highlighted in Figures 1 and 2. This allows
a language engineer to easily build languages from various components.

Modular Analysis. Attribute grammars can be used to solve the expression
problem by adding new productions and new equations in aspect produc-
tions. Forwarding provides a solution to the stronger version of the expres-
sion problem described in Section 1. Extensions that add new attributes
provide equations for the host language productions; productions added in
independent extensions get values for the new attributes via forwarding to
host language constructs. But we also want some assurance that the com-
position is well-defined and thus that no necessary attribute equations are
missing.

An attribute grammar is complete if there are no missing equations. This
is a simple static analysis that checks that for each production there is an
equation defining each attribute that decorates the left hand side nontermi-
nal and for each nonterminal on the right hand side there is an equation
for each inherited attribute that decorates it. When forwarding is present,
some of these equations are not needed. Consider the case in which a pro-
duction computes all of its synthesized attributes via the tree it forwards to
and does not access any synthesized attributes from its children: clearly, no
equations for inherited attribute need to be present for those children. This
leads to a notion of effective completeness [15]: for any syntax tree, during
attribute evaluation an equation is present for any attribute value that is to
be computed. A static effective completeness analysis is not as simple as the
completeness analysis since it must take into account the flow of attribute
values. This analysis uses the same attribute dependency information that
is used in a circularity analysis [20].

Because we are interested in independently developed language exten-
sions, we have developed a modular well-definedness analysis [15] that is

20

performed on a single extension and the host language it extends. The com-
position of any set of extensions that individually pass this analysis will be
effectively complete. This allows extension designers to check (and then mod-
ify as needed) their specifications so that there are no missing equations in the
composed specification. This analysis puts some restrictions on extensions
in order to provide these guarantees. One is that extension productions with
a host language nonterminal on the left hand side must forward (directly or
indirectly) to constructs in the host language. It also restricts equations so
that new dependencies cannot be added to host language attributes on host
language nonterminals. The host language determines what the dependen-
cies on host language attribute and nonterminals are and extensions cannot
extend these. For example, a host language attribute like errors depends on
the inherited env attribute, but no others. An extension cannot contain an
equation in which errors depends on additional inherited attributes. The
details of this analysis are published in another paper [15].

This analysis is useful for independently developed language extensions,
but it does not preclude an extension from depending on other extensions.
All grammars that an extension grammar imports are seen as the so-called
host language for this extension, even if some of those imported grammars
are extensions to some original host language. In this case the imported
extension grammars are not seen as being “independently developed” from
the extension that imports them.

In the Oberon0 specification, the procedures introduced in L3 and data
structures introduced in L4 do not pass the modular well-definedness analysis
simply because there are no constructs in L1 into which these new constructs
can be translated (via forwarding). This is required to solve the extended
expression problem when another extension adds a new analysis to the host
language since if L3 and L4 features do not forward to the host language
constructs the composed compiler could not perform this analysis on those
features.

In composing independently developed language extensions we must also
be concerned about the concrete syntax specifications: is the grammar com-
posed from the host language and the extensions ambiguous? Copper pro-
vides a modular determinism analysis for concrete syntax specification that
provide similar guarantees to the modular well-definedness analysis. Any
combination of extension concrete syntax specifications that pass the analy-
sis, with respect to the host language, can be composed to form an LALR(1)
grammar and a lexical syntax specification with no lexical ambiguities. The

21

full description of this analysis can be found in an earlier paper [16].

Ideally, the for-loop and case-statements would be seen as composable
language extensions, but the concrete syntax of both do not pass the mod-
ular determinism analysis since they both add new L2-defined terminals to
the follow-sets [25] of L1-defined nonterminals. This can lead to parse-table
conflicts in a composed language when two independently-developed exten-
sions each add a new terminal to a host language nonterminal’s follow-set
that overlaps with no other terminals in the host language but that do over-
lap with each other. In this case, combining the host language with a single
extension results in a conflict-free parse table, but the composition of both
does not.

Both of the modular analyses work well when the host language is rich
enough syntactically and semantically. Syntactically, this means that, for ex-
ample, host nonterminals having large follow-sets. Semantically, this means
that the language is expressive enough for extensions to have something to
forward to. In our specification of ANSI C, we include the GCC statement-
expression extension in our host language. This expression construct has the
form: ({ stmt;; stmits; ...; stmt,; expr; }). It allows a sub-expression
to contain a sequences of statements to be executed before the value of the
sub-expression is computed as the value of the final expression. This is quite
useful in adding expressive expression-level extensions to C since they can
forward to this sort of construct. L1 as host language fails to meet these
requirements and thus it is not surprising that these extensions do not pass
the modular analyses.

10. Related Work

There are many different approaches to generating language implemen-
tations from declarative specifications in the literature. Here we focus on a
comparison between Silver and other tools participating in the tool challenge
and appearing in this special issue [2]. For a broader coverage of related
work, please see other papers on Silver and Copper [8, 3, 13, 15, 4, 16, 26].

Safety. Silver and Copper emphasize safety in language specification, imple-
menting a number of analyses designed to ensure that certain faults do not
arise in the language implementations that are generated from declarative
specifications. This is not unexpected since our focus is on composable lan-
guage extensions. In this setting, a non-expert programmer will select a few

22

independently-developed language extensions and thus the composition of
these extensions with the host language must “just work.”

Some of these analyses are useful in the Oberon0 specification. Copper
requires grammars to be LALR(1), and thus non-ambiguous. Similarly, Jas-
tAdd’s [10] use of Beaver and Simpl’s use of ANTLR restrict the grammars
to non-ambiguous classes. The other approaches prefer grammar formalisms
that are not restricted in this way. Rascal uses generalized LL (GLL [27])
parsing and the OCaml implementation, Kiama, and CoCoCo use parser-
combinator libraries. These all let one avoid the perceived restrictions of
LALR(1) grammars at the cost of not checking at parser-specification time
that the resulting parser will only return one syntax tree, or zero in case of
a syntax error.

Silver’s well-definedness analysis can be run over a monolithic (whole
language) specification, as is done for Oberon(, ensuring that the attribute
grammar is not missing any needed attribute-defining equations. CoCoCo
gets a similar sort of safety by encoding the attribute completeness test in the
Haskell type system - thus missing equations are reported, albeit as Haskell
type errors. The other attribute grammar systems, JastAdd and Kiama,
do not implement these sorts of analyses leaving the detection of missing
equations to attribute evaluation time.

Ease of tool implementation. Building language processing tools can require
a significant investment, but can also sometimes be carried out in a more
lightweight manner which requires less investment of time and effort. The
language processing tools described in this special issue range from high-
investment “whole language” approaches to lightweight approaches.

The “whole-language” approach is taken by Silver and Rascal. These are
systems in which the language specification is written in the Silver or Rascal
language and that there is no commonly-used “backdoor” to the underlying
implementation language. (Silver is translated to Java, but one doesn’t write
Java code in attribute equations.) This requires significant investment, but
allows error messages to be generated for the Silver or Rascal specifications by
the Silver or Rascal compiler. In Silver, it also makes it possible to implement
Silver’s type system and well-definedness analysis.

Kiama and CoCoCo are sophisticated embedded domain-specific lan-
guages (in Scala and Haskell, respectively) and rely on these underlying lan-
guages for at least some of their error checking and error reporting. This
is similar for the OCaml implementation and Simpl which are even lighter

23

weight approaches. While approach can reduce the investment in building
the tool, it does come with the cost of errors that are sometimes not de-
tected or are reported by the underlying languages type system which can
make them less easy to understand. But the savings in implementation cost
should not be underestimated. JastAdd specifications are a blend of these
approaches, attribute and grammar specifications are written in the custom
JastAdd language, while attribute equations are written in Java. Thus al-
lowing the JastAdd system (which translates these specifications to Java) to
report error messages on some components but also making it possible to
get errors messages from the underlying Java compiler. A similar approach
is taken by the AspectAG [28] system which can serve as a front end to the
Haskell embedded domain-specific language CoCoCo.

Of course, no approach to tool implementation is clearly better than the
others as demonstrated by the wide variety of approaches on display in the
Tool Challenge and given the different goals of tool developers.

11. Conclusion

In this paper we have described the Silver implementation of Oberon0
developed for the LDTA’11 Tool Challenge. We have discussed aspects of
the Silver specification of Oberon0 that highlight various characteristics of
Silver.

To have a deeper understanding of Silver and its approach to language
specification, interested readers are encouraged to download the Silver spec-
ification of Oberon(0. By doing so, one can further explore the examples
described above and other aspects of the implementation. The Tool Chal-
lenge test suite is included as are various scripts and instructions for building
and running the Oberon0 artifacts. Additional documentation and discussion
of the specification are also provided.

References

[1] N. Wirth, Compiler Construction, Addison-Wesley, 1996.

[2] M. van den Brand, Preface to the special issue on the LDTA’11 Tool
Challenge, Science of Computer Programming. In press.

[3] E. Van Wyk, D. Bodin, J. Gao, L. Krishnan, Silver: an extensible at-
tribute grammar system, Science of Computer Programming 75 (1-2)
(2010) 39-54.

24

[4]

E. Van Wyk, A. Schwerdfeger, Context-aware scanning for parsing ex-
tensible languages, in: Intl. Conf. on Generative Programming and Com-
ponent Engineering, (GPCE), ACM, 2007, pp. 63-72.

H. Vogt, S. D. Swierstra, M. F. Kuiper, Higher-order attribute gram-
mars, in: Proc. of ACM Conf. on Programming Language Design and
Implementation (PLDI), ACM, 1989, pp. 131-145.

G. Hedin, Reference attribute grammars, Informatica 24 (3) (2000) 301
317.

J. T. Boyland, Remote attribute grammars, J. ACM 52 (4) (2005) 627—
687.

E. Van Wyk, O. de Moor, K. Backhouse, P. Kwiatkowski, Forwarding
in attribute grammars for modular language design, in: 11th Conf. on
Compiler Construction (CC), Vol. 2304 of LNCS, Springer-Verlag, 2002,
pp. 128-142.

M. Viera, S. D. Swierstra, W. Swierstra, Attribute grammars fly first-
class: How to do aspect oriented programming in Haskell, in: Proc. of
2009 International Conference on Functional Programming (ICFP’09),
ACM, 2009, pp. 245-256.

T. Ekman, G. Hedin, The JastAdd system - modular extensible compiler
construction, Science of Computer Programming 69 (2007) 14-26.

A. M. Sloane, Lightweight language processing in Kiama, in: Proc. of
the 3rd summer school on Generative and transformational techniques
in software engineering 111 (GTTSE 2009), Vol. 6491 of LNCS, Springer,
2011, pp. 408-425.

A. M. Sloane, L. C. Kats, E. Visser, A pure embedding of attribute
grammars, Science of Computer Programming 78 (10) (2013) 1752 —
1769.

T. Kaminski, E. Van Wyk, Integrating attribute grammar and func-
tional programming language features, in: Proc. of the 4th Intl. Conf.
on Software Language Engineering (SLE 2011), Vol. 6940 of LNCS,
Springer, 2011, pp. 263-282.

25

[14]

[15]

[16]

[17]

M. Zenger, M. Odersky, Independently extensible solutions to the ex-
pression problem, in: Proc. of FOOL, Vol. 12, 2005.

T. Kaminski, E. Van Wyk, Modular well-definedness analysis for at-
tribute grammars, in: Proc. of Intl. Conf. on Software Language Engi-
neering (SLE), Vol. 7745 of LNCS, Springer, 2012, pp. 352-371.

A. Schwerdfeger, E. Van Wyk, Verifiable composition of deterministic
grammars, in: Proc. of ACM SIGPLAN conference on Programming
Language Design and Implementation (PLDI), ACM, 2009, pp. 199
210.

E. Van Wyk, L. Krishnan, A. Schwerdfeger, D. Bodin, Attribute
grammar-based language extensions for Java, in: Proc. of European
Conf. on Object Oriented Prog. (ECOOP), Vol. 4609 of LNCS, Springer,
2007, pp. 575-599.

Y. Mali, E. Van Wyk, Building extensible specifications and implemen-
tations of Promela with AbleP, in: Proc. of Intl. SPIN Workshop on
Model Checking of Software, Vol. 6823 of LNCS, Springer, 2011, pp.
108-125.

J. Gao, M. Heimdahl, E. Van Wyk, Flexible and extensible notations
for modeling languages, in: Fundamental Approaches to Software Engi-
neering, FASE 2007, Vol. 4422 of LNCS, Springer, 2007, pp. 102-116.

D. E. Knuth, Semantics of context-free languages, Mathematical Sys-
tems Theory 2 (2) (1968) 127-145, corrections in 5(1971) pp. 95-96.

P. Klint, T. van der Storm, J. Vinju, Rascal: a domain specific language
for source code analysis and manipulation, in: Proc. of Source Code

Analysis and Manipulation (SCAM 2009), 2009.

D. Swierstra, O. Chitil, Linear, bounded, functional pretty-printing,
Journal of Functional Programming 19 (2009) 1-16.

E. Magnusson, T. Ekman, G. Hedin, Demand-driven evaluation of col-
lection attributes, Automated Software Engineering 16 (2) (2009) 291
322.

26

[24] T. Johnsson, Lambda lifting: transforming programs to recursive equa-
tions, in: Proc. of Functional Programming Languages and Computer
Architecture, Vol. 201 of LNCS, Springer, 1985, pp. 190-203.

[25] A. Aho, R. Sethi, J. Ullman, Compilers — Principles, Techniques, and
Tools, Addison-Wesley, Reading, MA, 1986.

[26] A. Schwerdfeger, E. Van Wyk, Verifiable parse table composition for de-
terministic parsing, in: 2nd International Conference on Software Lan-
guage Engineering, Vol. 5969 of LNCS, Springer, 2010, pp. 184-203.

[27] E. Scott, A. Johnstone, GLL parsing, Electronic Notes in Theoretical
Computer Science 235 (2010) 177-189.

[28] M. Viera, D. Swierstra, A. Middelkoop, UUAG meets AspectAG: How to
make attribute grammars first-class, in: Proceedings of the 12" Work-
shop on Language Descriptions, Tools, and Applications, LDTA 12,
ACM, New York, NY, USA, 2012, pp. 6:1-6:8.

27

